NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS \Q%Q\QQ 154

DESIGN, CONSTRUCTION AND PROGRAMMING
OF A MICROCONTROLLER-BASED TESTBENCH
SUITABLE FOR RADIATION TESTING OF
MICROELECTRONIC CIRCUITS
by
John A. Thompson

March 1997

Thesis Advisor: Douglas J. Fouts

Approved for public release; distribution is unlimited

--DTIC QUALITY mspECTED .

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed,
and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
blank) March 1997 Master’s Thesis
4, TITLE AND SUBTITLE 5. FUNDING NUMBERS

DESIGN, CONSTRUCTION AND PROGRAMMING OF A MICROCONTROLLER-
BASED TESTBENCH SUITABLE FOR RADIATION TESTING OF
MICROELECTRONIC CIRCUITS

6. AUTHOR(S)

Thompson, John A.

7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) 8. PERFORMING
ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS (ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11.SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b.DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13.ABSTRACT (maximum 200 words)

This thesis describes the design, construction, and programming of a microcontroller-
based testbench suitable for radiation testing microelectronic integrated circuits. It will
be used to test circuits fabricated using the Low Temperature Gallium Arsenide (LT GaAs)
fabrication process developed by the Naval Postgraduate School and the Naval Research
Laboratory. The testbench will be used to test for sensitivity to Single Event Upsets
(changes in logic level due to impact by high energy ions). Due to the spurious radiation
around the particle accelerator, it will be remotely operated via a serial communication
port. Radiation hardened components will eventually be used throughout, although for cost-
savings, non-radiation hardened components are used in the initial design described here.
The test bench is built around the Intel 87C51 four-port microcontroller. As part of this
research, it will be programmed to test two memory chips, one manufactured by Motorola Inc.
and one by Vitesse Semiconductor Corporation. The Motorcla chip requires that a special
chip carrier with logic translation and output drivers be designed prior to testing.

14.SUBJECT TERMS 15.NO. OF PAGES
130

Testbench, Radiation Testing, Memory Testing, Micrporocessor-

Controlled Test Equipment 16.PRICE CODE

17.SECURITY CLASSIFI- | 18.SECURITY CLASSIFI- 19.SECURITY CLASSIFI- |20.LIMITATION OF

CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL ‘

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

)

Approved for public release; distribution is unlimited.

DESIGN, CONSTRUCTION AND PROGRAMMING OF A MICROCONTROLLER-BASED
TESTBENCH SUITABLE FOR RADIATION TESTING OF MICROELECTRONIC
CIRCUITS

John A. Thompson
Lieutenant, United States Coast Guard
B.S., 0ld Dominion University, 1992

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
from the

NAVAIL POSTGRADUATE SCHOOL
March 1997

Author: Vi }(7621%Q£Lm\

John A. Thompson

Approved by: DELW ﬂ , Z;Ldé

Douglas &. Fouts, Thesis Advisor

Y e

Todd R. Weatherfo Second Reader

Wl

Herschel H. Loomis,
Department of Electrical and Computer Engineering

iii

iv

ABSTRACT

This thesis describes the design, construction, and
programming of a microcontroller-based testbench suitable for
radiation testing microelectronic integrated circuits. It
will be used to test circuits fabricated using the Low
Temperature Gallium Arsenide (LT GaAs) fabrication process
developed by the Naval Postgraduate School and the Naval
Research Laboratory. The testbench will be used to test for
sensitivity to Single Event Upsets (changes in logic level due
to impact by high energy ions). Due to the spurious radiation
around the particle accelerator, it will be remotely operated
via a serial communication port. Radiation hardened
components will eventually be used throughout, although for
cost-savings, non-radiation hardened components are used in
the initial design described here. The test bench is built
around the Intel 87C51 four-port microcontroller. As part of
this research, it will be programmed to test two memory chips,
one manufactured by Motorola Inc. and one by Vitesse
Semiconductor Corporation. The Motorola chip requires that a
special chip carrier with logic translation and output drivers

be designed prior to testing.

vi

TABLE OF CONTENTS

I. INTRODUCTION .ttt ittt ittt ieesenneceeosensennnennan
IT SYSTEM LEVEL DESIGNttt rineennnceenennnnnn
A. OVERVIEW ...ttt ittt iteeenannaeeannnnan

B. MICROCONTROLLER AND MEMORY SUBSYSTEM

C. PERIPHERAL INTERFACE SUBSYSTEMccceee...

D. POWER SUPPLY ...ttt iiteitenensanannns

ITI. DESIGN DETAILS AND THEORY OF OPERATION
A. MICROCONTROLLER AND MEMORY SUBSYSTEM

B. PERIPHERAL INTERFACE SUBSYSTEMccccee...

C. POWER SUPPLY ..ttt i iietieeeeeeaoennnnnnn

D. CASE, PC BOARD, AND CABLING DETAILS

IV. INTEL MCS-51 FAMILY ARCHITECTURE +evenenenenennenn..
A. MEMORY ORGANIZATION ...t ititteeeeeneocacnnnanann

B. SPECIAL FUNCTION REGISTERSi.iieevcoceonnnnn.

C. PORT STRUCTURE AND OPERATION ... iiieeerrennannn

Do CPU TIMING .iiiiiiiiii i ietitetaeaeeennnnnnnn

E. TIMERS/COUNTERS &t cteitrtneneenronenenenennnnns

F. SERIAL INTERFACE ...ttt iitttneeeennaeeens

G. INTERRUPTS ...ttt ittt eeenennns

H. CONCLUSION ...t iiiitttemeetineeeennocoannnans

V. 80C51 FAMILY INSTRUCTION SET ..t ieeeeeeenennnnnnnn
A. OVERVIEWttt iiiitiititttnneeesenaaannnnnann

B. ADDRESSING MODES ..ttt ittt neneeeocenoanananaans

C. ARITHMETIC INSTRUCTIONS ...t iintreneeceannnnns

D. LOGICAL INSTRUCTIONS ...ttt tenrocoeconnnannn

E. DATA TRANSFER INSTRUCTIONSiveeeeeeeennnnnnn

F. BOOLEAN INSTRUCTIONS ...ttt eneeeennnaannnnn

G. JUMP INSTRUCTIONS ittt tteeereecencnosnananns

H. CONCLUSION ..ttt ittt iteentnenecennancannaens

A. OVERVIEW .ttt eeeeeecesosecscnnssnnnes 65
B. FEATURES st iiitteeeeeneeeseennocasssoasssonsaes 65
C. CONCLUSION it iitieneetooeeasessosanssooacncsons 70
VII. CIRCUIT TESTING USING THE TESTBENCHcc0.... 71
A. SETTING UP THE TESTBENCHc.cciiiceiennnn 72
B. THE MOTOROLA 256 X 8 SRAM MEMORY CHIP 73
C. THE VITESSE SRAM MEMORY CHIPcec.cceenn 77
VIII. CONCLUSION AND RECOMMENDATIONS ..cccenieceeceeenns 81
A. CONCLUSION it tititteesenseenseeassssssnscsnaassnns 81
B. RECOMMENDATIONS ...ttt ineeeeeonoaasscoossscnsos 82
LIST OF REFERENCES ..ttt it iieeetneennnenoncnnonns 85
APPENDIX A. LIST OF COMPONENTSccietceeeenencnnnnn 87
APPENDIX B. SCHEMATIC DIAGRAMS ... ccieicteocssonnensnn 91
APPENDIX C. ASSEMBLY LANGUAGE CODEcceeeccscneeeens 103
APPENDIX D. PCBOARD LAYOUT AND FABRICATION DETAILS 107
INITIAL DISTRIBUTION LIST ...t cueeeeeeeeesnccacannsoonns 121

viil

I. INTRODUCTION

The research project described here is but a small part
of a much larger and potentially very beneficial project at
the Naval Postgraduate School (NPS). Researchers at NPS, in
conjunction with researchers at the Naval Research Laboratory
and two companies, have been developing a new technique for
fabricating gallium arsenide (GaAs) digital 1integrated
circuits with the intent to make them immune to soft errors.
Soft errors (or Single Event Upsets, SEUs) are caused by high
energy particles which strike the memory or logic cell and
impart energy into it. This energy can be enough to switch
logic levels, thereby corrupting the stored data. A satellite
in geosynchronous orbit using present gallium arsenide
circuits can expect from 1 to 1000 errors per day per Mbit of
stored information (Weatherford, et al, 1996).

The new process involves growing an additional epitaxial
layer of GaAs on the surface of the wafer prior to growing the
layers where the transistors are to be fabricated. This
additional layer is grown at a much lower temperature than
normal (220° vice 600°) which dramatically shortens the
carrier lifetime. The higher recombination rate neutralizes
the charge caused by the particle before the charge can change
the stored logic level. Once perfected, the LT GaAs process
can potentially reduce the soft error rate by 8 orders of
magnitude (Weatherford, et al, 1996). This new process will
require no changes to existing circuit designs, only an
additional step in the wafer growth prior to integrated
circuit fabrication.

This particular research project involves designing,
fabricating, and programming a microcontroller-based testbench

for testing the circuits being fabricated using the LT GaAs

process. The testbench must be able to test a variety of
electronic circuits. Therefore, it must be easily
reprogrammable and all the control signals must be made
available to the circuit under test. Each circuit will be
bench-tested for functionality, then tested for sensitivity to
SEUs. A particle accelerator will be used as the source of
radiation for the SEU tests. Due to the high radiation levels
around the accelerator, the testbench will require radiation-
hardened components. Non-radiation hardened components will
be used during initial development and replaced once the
correct operation of the testbench verified. This will
prevent the destruction of the expensive radiation-hardened
circuitry during troubleshooting. A remote communication link
will also be included so that operators will not have to enter
the accelerator room during tests. The testing program being
run can be monitored and new programs can be down-loaded via
this link. Initial tests included as part of this project
will be on two memory chips. Motorola is supplying a 256 X
16-bit SRAM chip in both GaAs and LT GaAs versions. Vitesse
is also providing a 256 X 4 bit SRAM memory chip.

This thesis is also intended to be a technical manual for
the testbench itself. 1In addition, the testing algorithms and
implementation details will be provided for the two memory
chips. Chapter II provides a basic operational description of
the testbench. Detailed theory of operation is found in
Chapter III. Chapter IV and Chapter V are excerpts from the
data sheets for the 1i87C51 microcontroller published by
Philips Semiconductors. The architectural description of the
microcontroller is in Chapter IV and the instruction set is
presented in Chapter V. Chapter VI covers the operating
system, PAULMON, written by Mr. Paul Stoffregen of Oregon
State University. Details on the two SRAM chips from Motorola

and Vitesse and the testing algorithms are located in Chapter
VII. Included are the pin outs, the flow charts and details
of the hardware adapters required in order to interface the
chip with the testbench. Chapter VIII wraps up this project
and provides recommendations for future work. The appendices
include all the schematic drawings, PC Board layout drawings

and assembly language code as well as a detailed description

on how to build a printed circuit board using the equipment at
NPS.

IT. SYSTEM LEVEL DESIGN

A. OVERVIEW

The testbench 1s built around the Intel 87C51
microcontroller. This chip is compatible with the radiation-
hardened UT69RHO051 from United Technologies which will later
be substituted. Radiation hardened chips :are extremely
expensive, sometimes costing hundreds of times as much as
their non-radiation hardened counterparts.

Six ports are provided on the testbench to connect to the
unit-under-test (UUT). Two of these interface directly to the
microcontroller, CONN O and CONN 1. These ports provide
access to the address bus, data bus, and various control
signals. Three of the ports access the microcontroller via a
32-bit to 8-bit interface. The testbench will be connected to
a remote terminal via an RS-232 port (CONN 0) to provide an
operator interface as well as to keep the operator well clear
of any spurious radiation around the particle accelerator.
The testbench itself will be shielded with lead bricks while
performing radiation testing. This may not be necessary once

radiation hardened components are substituted.

B. MICROCONTROLLER AND MEMORY SUBSYSTEM

The microcontroller used in the testbench has four
programmable parallel input/output ports. Two of these are
used to provide a 16-bit address bus. The lower byte of the
address must be latched because this port is also used as the
system data bus. A second 8-bit data bus is also available.
The remaining port is unused as a parallel port. Instead, its
pins provide a serial communication port which is used in the
test bench to provide remote communications while in a

radiocactive environment. The microprocessor runs at 7.3728

5

MHz, which can be divided evenly to provide the desired baud
rate for the serial communication port. A basic block diagram

is shown in Figure 2.1 below.

DATA BUS

/
i

&——>PoRT1 PORTO
PROM RAM RAM
6__‘
SERIAL PORT
PORT 2
MICROCONTROLLER 16 ADDRESS BUS

Figure 2.1 Testbench Microcontroller and Memory

The microprocessor has the capacity for dual 64 Kbyte
address spaces, one for data and one for program code. In the
testbench, these address spaces have been combined into a
single 64 Kbyte address space. If internal PROM is present in
the microcontroller, it is recommended that it not be enabled.
It can be enabled, however, by switching a Jjumper at the
expense of the lower half of the external PROM. Internal
PROM, if present, resides in the lowest 4 Kbytes of the
address space. The external PROM normally resides in the
lowest 8 Kbytes of the memory map.

Two RAM chips are present in the testbench. Together,
they occupy the next two 8 Kbytes above the PROM in the memory
map. The upper 32 Kbytes of memory space is available to the
unit under test. It is possible to add additional RAM
externally using some of this space, while reserving part for
the unit being tested. The address space is shown graphically

in Figure 2.2.

0000h 2000h 4000h 5000h 3000h A000h C000h E008h FFFFh

PROM | RAM RAM | CONT. | TEST | TEST | TEST TEST
SPACE | SPACE | SPACE | SPACE | SPACE

Figure 2.2 Address Space

A more detailed description of the microcontroller and
memory subsystem 1is located in Section 3.A. Complete

schematic diagrams are located in Appendix B.

C. PERIPHERAL INTERFACE SUBSYSTEM
The testbench has six ports (CONN 0 through CONN 5) for

communication with the outside world, as shown in Figure 2.3.
CONN O is the serial communication port previously described.
CONN 1 is the data buses (port 0 and port 1) and CONN 2 is the
address bus, which are directly connected to the
microcontroller. It is anticipated that this testbench may be
used to test electronic memories that are much larger than the
capacity of the testbench itself (eight bits). Therefore,
interface circuitry is provided to combine four bytes of data
into a single 32-bit word and vice-versa. This capability is
replicated so that a 32-bit address word and a 32-bit data
word can be created byte by byte. CONN 3 is intended to be
used as a 32-bit address bus. CONN 4 is intended to be a 32-
bit data bus. Each of these bidirectional ports can be
individually byte accessed to allow maximum flexibility. In
addition, there is a 32-bit port, CONN 5, that is restricted
to input data only. Incoming data is latched and passed to
the data bus over four read cycles. CONN 5 can be used as a
32-bit data bus coming from the unit-under-test, while CONN 4
can be used as a 32-bit output bus going to the unit being
tested.

CONN 1 —
Y
[DATABUS @ s INTERFACE |
MICROCONTROLLER | LATCH CIRCUITRY
:": — L
CONN 3
CONN 0]
ADDRESS BUS
| INTERPACE |
~ | cmeurtry |
CONN 4
LATCH]
TESTBENCH |
CONN

Figure 2.3 Testbench Ports

The fourth 8 Kbyte page (just above the RAMs) in the
memory map is dedicated to control functions. These functions
select the peripheral interface, the individual port to be
accessed and whether it is to be an input or an output.

A more detailed description of the peripheral interface
subsystem is located 1in Section 3.B. Complete schematic

diagrams are located in Appendix B.

D. POWER SUPPLY

The power supply used in the testbench is a commercially
available unit manufactured by ACME Electric Corporation. It
actually has three outputs (+5 VDC, +12 VDC, -12 VDC),
although only the +5 VDC output is used internally. All three

outputs are available externally via the three terminals on
the rear of the testbench. Separate fuses are provided for
each terminal as well as for the internal +5 VDC supply. The
power supply is equipped with over-voltage and over-current
protection on the +5 VDC output only. A more detailed
description is located in Section 3.C. The schematic diagram

is located in Appendix B.

10

?
l

III. DESIGN DETAILS AND THEORY OF OPERATION

A. MICROCONTROLLER AND MEMORY SUBSYSTEM

The microcontroller, designated Ul, used in the testbench
is either the UT69RHO51 radiation-hardened model manufactured
by United Technologies or the non~radiation-hardened
equivalent, the 187C51 manufactured by Intel. Pin-for-pin,
both units are essentially identical with the largest
difference being the lack of internal PROM in the UT69RHO51.
Due to this difference, the testbench is designed not to use
internal PROM at all no matter which chip is used. This
feature can be overcome by switching a jumper if the i87C51 is
used. Other differences include the lack of an idle mode, a
power-down mode, and an on-circuit emulation mode in the
UT69RHO051. The UT69RHO51 microcontroller requires a longer
reset time (24 clock periods) than the i87C51. It is a more
rugged device than the i87C51 and can withstand a much wider
temperature range.

Both microcontrollers have a separate address space for
program and data memory. Up to 64 Kbytes can be addressed for
each. However, in the testbench, both address spaces have
been combined into a single 64 Kbyte space. This space 1is
divided into eight 8 Kbyte pages. The external PROM resides
in the lowest 8 Kbyte page. If the internal PROM of the
i87C51 is enabled, it occupies the lowest 8 to 32 Kbytes,
depending on which version is used. To enable the internal
PROM, EA (pin 31) must be tied high via jumper J2. NOTICE:
Jumpers Jl and J2 must never be in place at the same time.
This will short out the power supply.

The microcontroller features four 8-bit bidirectional
parallel ports of which three are used in the testbench. Port

0 and Port 2 together are used to form a 16-bit address. The

11

16-bit address is directly available to the external world via
connector CONN 2. Port 0 is latched by an octal latch (U5) so
that it may also be used as an eight-bit data bus. This is
the primary data bus for the test bench. Port 1 is used as a
second eight-bit data bus or, together with port 0, as a 16-
bit data bus. Both Port 0 and Port 1 are available to the
external world via connector CONN 1.

Port 3 is not used in the testbench, though many of its
pins are used for their secondary function. Pins 10 (RXD) and
11 (TXD) provide a full-duplex programmable serial port. This
port features a receive buffer, framing error detection and
automatic address recognition. The TTL logic levels available
on these two pins are converted to RS-232 logic level in the
MAX233 (Ue6). This device makes use of charge-pumping to
convert the 0 to +5 VDC TTL levels to the -10 VDC to +10 VDC
RS-232 levels while using a single +5 VDC supply. The serial
port is available to the external world via connector CONN O.

Pin 16 is the WRITE signal and pin 17 is the READ
signal. These are routed throughout the testbench and are
made available to the external world via CONN 2 with the
address bus. Pin 9 is the RESET signal. This pin must be
held high for 24 clock cycles in order to guarantee that all
the registers in the microcontroller are cleared. A resistor-
capacitor series network provides this function on power-up.
A front panel push-button switch is also available to reset
the testbench. The RESET signal also sets the peripheral
interface devices and is available to the external world via
connector CONN 2 with the address bus.

Pins 18 and 19 are connected to the crystal. Pin 18 1is
the input to the internal oscillator of the microcontroller
and pin 19 is the output. The crystal frequency is 7.3728

MHz. This frequency can be evenly divided down to provide the

12

common serial communication baud rates (e.g. 2400 baud, 4800
baud, 9600 baud, etc).

The address space is divided into 8 Kbyte pages as shown
in Figure 3.1 by a 3-to-8 decoder (U8). Address lines Al3
through Al5 are used to select each page. Four of these page
selects (or chip selects) serve no internal purpose to the
testbench and are available to the external world via
connector CONN 2 with the address bus. The four lower pages
of the address space are internal to the testbench. Page 1 is
dedicated to the PROM, U2. The radiation-hardened version of

this chip is the UT28F64. The non-radiation-hardened version

is the AM2764A (EPRCM) or the AT28C64 (EEPROM). The system
RAM chips reside in pages 2 and 3. These are UT67164
FFFFh
USER SPACE
E000h
DFFFh
USER SPACE
CO000h
BFFFh
USER SPACE
A000h
9FFFh
UNUSED USER SPACE
8000k
7FFFh
601Ch BYTE SELECT 4
6018k BYTE SELECT 3 CONTROL SPACE
6014h BYTE SELECT 2
6010k BYTE SELECT 1 6000k
600Ch 82C55 44 SFFFh
6008h 82C55 #3 RAM
6004h 82C55 #2
6000h 82C55 #1 4000k
3FFFh
RAM
2000h
1FFFR
PROM
0000k

Figure 3.1 Testbench Memory Map

13

radiation-hardened chips or 61C64 chips for non-radiation-
hardened applications. The pin-out for the RAM chips is
exactly the same as for the PROM chip with the exception of
pins 26 and 27. These are the WRITE lines for the RAMs and
PE (program Enable) for the PROM.

The fourth 8 Kbyte page in the address space is used for
control purposes. A second 3-to-8 decoder (U9) further
divides this page up to provide chip select signals for each
of the peripheral interface devices and four byte-select
signals. These byte-select signals select which byte of the
32-bit input data bus (CONN 5) will be connected to the
internal data bus of the testbench. By activating each of
these byte-select lines in sequence, a 32-bit data word can be
read into the microcontroller one byte at a time.

A detailed schematic of the microcontroller and memory

subsystem is located in Appendix B.

B. PERIPHERAL INTERFACE SUBSYSTEM

The peripheral interface subsystem includes all the
hardware necessary to mate the 32-bit ports (CONN 3, CONN 4
and CONN 5) to the eight-bit testbench. The hardware
associated with CONN 3 and CONN 4 is identical. Two
programmable peripheral interface devices (HS-82C55ARH or
82C55A), each providing two eight-bit ports, provide the 32
pins needed. Actually, the interface devices (U9 through UlZ2)
have three ports apiece, however one of the ports (Port C) is
used for control purposes. Port A and Port B of each
interface device goes through an octal bus transceiver. The
transceiver prevents the 32-bit data from showing up on the
associated connector until all four bytes are written and the
correct control signal comes from Port C.

The lower nibble of Port C contains the control signals

14

which determine the direction of data flow and also enable the
transceiver. The high nibble is unused. When the transceiver
is disabled, the buses on either side are effectively
disconnected. Once the four bytes of data are written to
Ports A and B of the two interface devices, XXXX0011, (X
represents don't cares) must be written to Port C of both
interface devices to connect the four bytes to the associated
connector. In order to receive 32-bits of data, XXXX0000,
must be written to Port C of both interface devices, then the
bytes must be read sequentially. The 32-bit input data word
on the connector must be held for at least five read cycles.

The individual interface devices are selected by U9, as
previously discussed. Once selected, the lowest two bits of
the address bus determine which port is to be selected. Other
inputs to the interface devices include the READ and WRITE
signals which determine if data is being written to the port
or read from it. Of course, the data bus is also an input to
the four peripheral interface devices.

CONN 5 is unigque in that it is restricted to data-input
functions only. The four Dbytes of data are latched
simultaneously into four octal D flip-flops (U21 through U24)
and read a byte at a time over four read cycles. This port
has the advantage over CONN 4 in that the data only has to be
held stable for one read cycle. The four bytes are latched
together by the DATA LATCH signal. This signal is generated
by the logical AND of AlS5 and the READ signal. The octal
flip-flops enable their outputs when a signal comes from US
(CS BYTE 1 to CSBYTE4), as previously discussed.

Detailed schematics can be found in Appendix B.

C. POWER SUPPLY

The 1A2 power supply module is a commercially available

15

product manufactured by ACME Electric Corporation. It is a
low profile, unenclosed, three-output switching power supply,
model number LSWT-3031. Mounted inside and to the rear of the
top cover, it provides the +5 VDC supply to the testbench and
also provides three voltage sources (+5 VDC, +12 VDC, -12 VDC)
to the accessory plugs on the back of the testbench. All
sources are fused so that an over-current condition at the
accessory plugs will not affect the supply to the testbench.
This model is equipped with both over-voltage and over-current
protection on the +5 VDC output. Table 3.1 1lists the
specifications of the LSWT-3031 as listed on the data sheets
and 1is reproduced here with permission of ACME Electric
Corporation. Table 3.2 and Figure 3.2 are also from ACME's
data sheets for the LSWT-3031 and show the input and output

pin connections.

D. CASE, PC BOARD, AND CABLING DETAILS

The case is a two-part aluminum enclosure manufactured by
Precision Fabrication Technologies (PFT) Inc. The power
supply module (1A2) is fastened to the back of the top part.
Also attached to the top are all the ports, fuses, switches,
and accessory power plugs. The lone fuse on the top left of
the case is for the +5VDC supply to the testbench itself. The
fuses on the rear are for the accessory plugs. The PC board
is mounted on nylon stand-offs on the base and connected to
the rest of the unit via ribbon cables.

The 8" x 9" printed circuit board (1Al) was fabricated at
the Naval Postgraduate School. It is double-clad with nickel-
plated copper which forms a power plane on one side and a
ground plane on the other. The circuit was laid out using
three programs: Easytrax, PCGerber, and Protoboard. Appendix

E has explicit details on this process. The outline of the

16

)

AC INPUT

Input Voltage 85-264 Vac
Frequency 47-440 Hz
Current (115 Vac/230 Vac) 0.8A / 0.5A

Inrush Current

15A @ 115Vac, 30A @ 230 Vac

Leakage Current to EN60950

DC Output

Output 1 +5 VDC @ 3 Amps
Output 2 +12 VDC @ 1.5 Amps
Output 3 -12 VDC @ 0.2 Amps

Output range

+5% on +5 VDC Output

Line Regulation

I+

0.5

oL

Load Regulation

1% Single Output, 3% main
Output (50 to 100% load
change)

Cross Regulation

5% typical

Ripple and Noise

1% peak-to-peak typical

Overload Protection

Overload and Short Circuit
Protected

Overvoltage Protection

5.6 - 6.6V on +5 VDC Output

Minimum Load

Approximately 10% on +5 VDC
Qutput

Efficiency 65% min at full load
Holdup Time 12 msec

General

Operating Temperature 0° to 50° C

MTBF

100,000 Hours Minimum

RFI Performance

VDE 0871AA

Table 3.1 Power Supply Specifications

17

P1-N | AC Input - Neutral

P1-L [AC Input - Line

P2-1 | DC Output - +5 VDC

P2-2 DC OQutput - +5 VDC

P2-3 DC Output - Return

pP2-4 DC Output - Return

P2-5 | DC Output - +12 VDC

P2-6 | DC Output - -12 VDC
Table 3.2 Pin Assignments for the LSWT-3031 Power Supply

O O
P2
1 e}
O
]
]
O
o
P1 6
o|IN
o|lL
O O

Figure 3.2 LSWT-3031 Pin Locations

traces, pads and vias was milled into the board, isolating
them from the power and ground plane. The ICs are mounted on
low-profile sockets for easy replacement.

There are six connectors on the front of the testbench
labeled CONN 0 through CONN 5. CONN 0 is a subminiature D
connector that is RS-232 compatible for serial communications
directly to the microcontroller. This 1is used for

communications with the user via a portable PC configured as

18

a terminal. Half the conductors in the ribbon cable
connectors (CONN 1 through CONN 5) consist of power and
ground. Each conductor that carries a signal is shielded by
Vpp on one side and ground on the other. This is done in an
effort to minimize noise and reduce the effects of the
radiocactive environment. CONN 1 provides direct access to
Port 0 and Port 1 of the microcontroller. This is intended to
be either two eight-bit data buses or a single 16-bit data
bus. CONN 2 provides direct access to the 16-bit address bus
of the microcontroller. Also included on this connector are
important control signals such as READ, WRITE , RESET, and
the page selectors. CONN 3 is intended to be used as a 32-bit
address port. This port is indirectly 1linked to the
microcontroller wvia two peripheral interfaces. It can
actually be used as a 32-bit I/0 port, two 16-bit I/O ports,
or four eight bit I/0 ports. If used as a 32-bit address bus,
the address must be written via the data bus over four write
cycles. Therefore, it is much slower than the 16-bit address
bus port. Similarly, CONN 4 is intended to be used as a 32-
bit data bus but can also be used as an I/0 port, much like
CONN 3. CONN 5 can only be used as an input port. It is
intended to be used as a 32-bit data input bus but is also
byte-accessible. The pin assignments for the connectors
follow.

2 XMT DATA
3 RCV DATA
7 GROUND

Table 3.3 CONN O Pin Assignments

1 vdd 10 P0-4 19 GND 28 P1-5
2 P0O-0 11 GND 20 P1-1 29 vdd
3 GND 12 P0-5 21 vdd 30 Pl-6
4 PO-1 13 vdd 22 P1-2 31 GND
5 vdd 14 P0-6 23 GND 32 P1-7
6 P0-2 15 GND 24 P1-3 33 vdd
7 GND 16 P0-7 25 vdd 34 N/C
8 P0-3 17 vdd 26 P1-4

9 vdd 18 Pl-1 27 GND

Table 3.4 CONN 1 Pin Assignments

1 vdd 14 A6 27 GND 40 CSC*

2 A0 15 GND 28 Al3 41 vdd

3 GND 15 A7 29 vdd 42 CSE*

4 Al 17 vdd 30 Al4 43 GND

5 vdd 18 A8 31 GND 44 | READ¥*

6 A2 19 GND 32 Al5 45 vdd

7 GND 20 A9 33 vdd 46 | WRITE*

8 A3 21 vad 34 N/C 47 GND

vdd 22 AlO 35 GND 48 | RESET
10 A4 23 GND 36 cs8* 49 vdd
11 GND 24 All 37 vdd 50 N/C
12 A5 25 vdd 38 CSA*
13 vdd 26 Al2 39 GND
Table 3.5 CONN 2 Pin Assignments

20

1 vdd 23 GND 45 vdd

2 USPAO A0 24 U9PB3 | Alll 46 UlOPAG6 | A22
3 GND 25 vdd 47 GND

4 U9PAL Al 26 U9PB4 | A12 | 48 Ul10PA7 | A23
5 vdd 27 GND 49 vdd

6 U9PA2 A2 28 U9PB5 | A13 || 50 Ul0PBO | A24
7 GND 29 vdd 51 GND

8 USPA3 A3 30 USPB6 | Al4) 52 Ul0PB1 | A25
9 vdd 31 GND 53 vdd

10 U9PA4 Ad 32 U9PB7 | A1S5 | 54 Ul0PB2 | A26
11 GND 33 vdd 55 GND

12 U9PAS AS5 34 Ul0PAO | Al6fl 56 Ul0PB3 | A27
13 vdd 35 GND 57 vdd

14 U9PAG6 Ab 36 | ULOPALl | Al17| 58 Ul0PB4 | A28
15 GND 37 vdd 59 GND

16 USPAT A7 38 Ul0PA2Z | A18| 60 Ul0PBS5 | A29
17 vdd 39 GND 61 vdd

18 USPBO A8 40 | Ul0PA3 | AL1S| 62 U1l0PB6 | A30
19 GND 41 vdd 63 GND

20 U9PB1 AS 42 Ul0PA4 | A20 | 64 Ul0PB7 | A31
21 vdd 43 GND

22 U9PB2 | A10 | 44 Ul0PAS | A21

Table 3.6 CONN 3 Pin Assignments

21

1 vdd 23 GND 45 vdd

2 Ul1PAO DO 24 Ul1PB3 | D11 | 46 Ul2PA6 | D22
3 GND 25 vdd 47 GND

4 UllPAl D1 26 | UllpB4 | D12| 48 Ul12PA7 | D23
5 vdd 27 GND 49 vdd

6 Ul1lPA2 D2 28 U11PBS5 | D13 50 U1l2PBO | D24
7 GND 29 vdd 51 GND

8 Ul1PA3 D3 30 Ul1PB6 | D14 | 52 U12PB1 | D25
9 vdd 31 GND 53 vdd

10 Ul1PA4 D4 32 Ul11PB7 | D15} 54 Ul2PB2 | D26
11 GND 33 vdd 55 GND

12 Ul1PAS D5 34 Ul2PAO | D16} 56 Ul2PR3 | D27
13 vdd 35 GND 57 vdd

14 Ul1lPAG6 D6 36 | Ul2pAl | D17} 58 Ul2PB4 | D28
15 GND 37 vdd 59 GND

16 Ul1PAT7 D7 38 Ul2PA2 | D18 60 Ul12PBS | D29
17 vdd 39 GND 61 vdd

18 U1l1lPBO D8 40 Ul2PA3 | D19| 62 Ul2pB6 | D30
19 GND 41 vdd 63 GND

20 Ul1lPB1 D9 42 Ul2PA4 | D20 || ©4 U12PB7 | D31
21 vdd 43 GND

22 Ul1lPB2 | D10 | 44 Ul12PAS5 | D21

Table 3.7 CONN 4 Pin Assignments

22

i
I

1 U21-DO0 DO 23 U22-D3 | D11| 45 | U23-D6 | D22
2 vdd 24 GND 40 vdd

3 U21-D1 D1 25 | U22-D4 | D12 || 47 U23-D7 | D23
4 GND 26 vdd 48 GND

5 U21-D2 D2 27 U22-D5 | D13 | 49 | U24-D0 | D24
6 vdd 28 GND 50 vdd

7 U21-D3 D3 29 | U22-D6 | D14 51 U24-D1 | D25
8 GND 30 vdd 52 GND

9 U21-D4 D4 31 U22-D7 | D15| 53 | U24-D2 | D26
10 vdd 32 GND 54 vdd

11 U21-D5 | DS 33 | U23-DO | Dlé6|lf 55 | U24-D3 | D27
12 GND 34 vdd 56 GND

13 U21-D6 | D6 35 | U23-D1 | D17} 57 U24-D4 | D28
14 vdd 36 GND 58 vdd

15 U21-D7 D7 37 U23-D2 | D18 | 59 | U24-D5 | D29
16 GND 38 vdd 60 GND

17 U22-D0 D8 39 | U23-D3 | D19 61 U24-D6 | D30
18 vdd 40 GND 62 vdd

19 U22-D1 DS 41 U23-D4 | D20} 63 | U24-D7 | D31
20 GND 42 vdd o4 GND

21 U22-D2 | D10 43 | U23-D5 | D21

22 vdd 44 GND

Table 3.8 CONN 5 Pin Assignments

23

24

IV. INTEL MCS-51 FAMILY ARCHITECTURE

The testbench uses the Intel 87C51 microcontroller or the
radiation-hardened equivalent from United Technologies, the
UT69RHO51. Both are derivatives of the 8051 microcontroller.
There are hundreds of different versions of this micro-
controller on the market. The 87C51 is a CHMOS version which
uses EPROM rather than PROM. The UT69RHO51 does not include
on-board ROM of any type. Only the information that applies
directly to the 87C51 is reproduced here. The information in
this chapter is paraphrased from the 80C51 family data sheets
published by Philips Semiconductors, dated March 1995. This
information can also be found in Intel's "Embedded

Microcontrollers and Processors, Volume I", dated 1992.

A. MEMORY ORGANIZATION

The 80C51 family of microcontrollers all have separate
address spaces for program and data memory. The MOVC command
reads from program memory; MOVX accesses data memory. Each
memory block can have up to 64K addresses. External program
and data memory can be combined, if desired, by applying the

READ and PSEN signals to the inputs of an AND gate. The
output of the AND gate becomes the read strobe for the
combined address space.

All 1Intel 80C51 microcontrollers have 4 Kbytes of
internal PROM. In order to disable this memory and use
strictly external PROM, the EA(External Access) must be tied
to V. PSEN is the read strobe to external memory. If
internal memory is used, PSEN is not active for addresses
within the first 4 Kbytes.

The 80C51 has three 128-byte blocks of internal 8-bit

registers. However, all internal data accesses are limited to

25

an 8-bit address, which implies a maximum of 256 bytes. The
way the 80C51 gets around this is to make two of the blocks
share the same addresses. The type of instruction
differentiates which block is to be accessed. ©One of the two
blocks is accessible by indirect addressing only. The other
is directly addressable and it is in this area that all the
Special Function Registers (SFR) are located. Figure 4.1
shows the internal data memory. In the lowest 128 bytes of
registers there are 4 banks of 8 registers named RO through
R7. Two bits in the Program Status Word (PSW) select which
register bank to use. The default reset value of the stack
pointer is 07h. Therefore, the stack, which grows upward,
starts at 08h. The next 16 bytes above the register banks
form a block of bit-addressable memory space. The 80C51
instruction set includes a wide selection of single-bit
instructions and the 128 bits in this area can be directly

addressed by these instructions.

B. SPECIAL FUNCTION REGISTERS

Figure 4.2 shows the contents and location of the special
function registers. The bulk of this 128-byte block is not
implemented on chip. Read accesses to these addresses will,
in general, return random data and write accesses will have no
effect. The shaded areas in the figure are those areas that

are not implemented.

1. Accumulator (ACC)
The accumulator register resides at address EOh. The
mnemonics for accumulator-specific instructions refer to the

accumulator simply as A.

26

7Fh

SPECIAL FUNCTION REGISTER
FFh
2Fh ACCESSIBLE ACCESSIBLE
ADDRESSURLE 27 57
SPACE INDIRECT DIRECT
ADDRESSING ADDRESSING
80h
1Fh
11 ACCESSIBLE
17h BY
10 DIRECT
BANK SELECT BITS IN PSW OFh ADDRESSING
00h
o STACE POINTER
07h
00
Figure 4.1 Internal Registers of the 80C51

Figure 4.2

27

Special Function Registers

2. B Register
The B register is used during multiply and divide
operations. For other instructions, it can be treated as a

scratchpad register. It resides at address FOh.

3. Program Status Word (PSW)

The eight bits of the Program Status Word register
contain program status information as listed below. The PSW
resides in address DOh.

Bit O Parity bit Set/cleared by hardware each
instruction cycle to indicate
an odd/even number of "ones" in
the Accumulator.

Bit 1 User Defined
Bit 2 Over-Flow Flag
Bits 3&4 RSO,RS1 Register Dbank select bits.
Set/cleared by software to
determine working register
bank.
RSO/RS1 Selected Bank
0 0 Bank 0 (00h-07h)
0 1 Bank 1 (08h-0Fh)
1 0 Bank 2 (10h-17h)
1 1 Bank 3 (18h-17h)
Bit 5 Flag O Available to the wuser for
general purposes.
Bit 6 Aux Carry Flag Used for BCD operations
Bit 7 Carry Flag

4. Stack Pointer (SP)

The 8-bit Stack Pointer is incremented before data is
stored during PUSH and CALL executions. While the stack may
reside anywhere in on-chip RAM, the Stack Pointer is
initialized to 07h after a reset. This causes the stack to

begin at location 08h.

5. Data Pointer (DPL, DPH)
The Data Pointer (DPTR) consists of a high byte (DPH) and
a low byte (DPL). Its intended function is to store a 1l6-bit

28

address. It may be manipulated as a 16-bit register or as two

independent 8-bit registers.

6. Ports O to 3

PO, Pl, P2, and P3 are the SFR latches for Ports 0,1, 2,
and 3, respectively. Writing a one to a bit of any of these
registers causes the corresponding port output pin to switch
high. Writing a zero causes the output pin to switch low.
When used as an input, the external state of a port pin will
be held in the corresponding port register bit. More detail

on the 80C51 ports can be found in Section 4.C.

7. Serial Data Buffer (SBUF)

The Serial Buffer is actually two separate registers, a
transmit buffer and a receive buffer. When data is moved to
SBUF, it goes to the transmit buffer and is held for serial
transmission. Moving a byte to SBUF is what initiates the
transmission. When data is moved from SBUF, it comes from the
receive buffer. A more detailed description of the serial

interface is located in Section 4.F.

8. Timer Registers Basic to 80C51

Register pairs THO/TLO and TH1/TLl1 are the 16-bit
counting registers for timer/counters 0 and 1 respectively.
A more detailed description of the timer/counters is found in

Section 4.E.

8. Control Registers

Special Function Registers IP, IE, TMOD, TCON, SCON, and
PCON contain control and status bits for the interrupt system,
the Timer/Counters, and the serial port. They are described

in more detail in a later section.

29

C. PORT STRUCTURE AND OPERATION
All four ports of the 80C51 are bidirectional. Each

consists of a latch (special function registers PO through
P3), an output driver and an input buffer. The output drivers
of Port 0 and Port 2, along with the input buffer of Port O,
are used in 16-bit accesses to external memory. In this
application, Port O outputs the low byte of the external
memory address, time-multiplexed with the data byte being
written or read. ALE (Address Latch Enable) should be used to
enable an external latch to capture the low byte. Port 2
outputs the high byte of the external memory address when the
address is 16 bits wide. During this time, the contents of
the Port 2 SFRs are not modified and will reappear on the pins
on the cycle following the memory access.

All four ports are multifunctional. Table 4.1 shows the
alternate functions of each of the ports. The alternate
functions can only be activated if the corresponding bit latch
in the port SFR contains a one.

Figure 4.3 shows a functional diagram of a typical bit
latch and I/0 buffer in each of the four ports. The bit latch
(one bit in the port's SFR) is represented as a D-type flip-
flop, which will clock in a value from the internal bus in
response to a "write to latch" signal from the CPU. The level
of the port itself is placed on the internal bus in response
to a "read pin" signal from the CPU. Some instructions that
read a port activate the "read latch" signal and others
activate the "read pin" signal.

The output drivers of Port 0 and Port 2 are switchable
between the port SFR and the ADDR/DATA bus by an internal
CONTROL signal for use in external memory accesses. During

external memory accesses, the Port 2 SFR remains unchanged,

30

P0O-0 Al Address Bit O

PO-1 Al Address Bit 1

P0-2 A2 Address Bit 2

P0O-3 A3 Address Bit 3

P0-4 A4 Address Bit 4

PO-5 A5 Address Bit 5

PO-6 A6 Address Bit 6

PO-7 A7 Address Bit 7

P1-0 T2 External clock input to timer/counter 2

P1-1 T2EX | Timer/counter 2 capture/reload trigger and
direction control

Pl-2 ECI External count input to PCA

P1-3 CEXO | Ext I/0 for PCA capture/compare Module 0

Pl-4 CEX1 |Ext I/0 for PCA capture/compare Module 1

P1-5 CEX2 |Ext I/0 for PCA capture/compare Module 2

P1-6 CEX3 |Ext I/0 for PCA capture/compare Module 3

P1-7 CEX4 |Ext I/0 for PCA capture/compare Module 4

P2-0 A8 Address Bit 8

pP2-1 A9 Address Bit 9

P2-2 Al0 Address Bit 10

pP2-3 All |Address Bit 11

P2-4 Al2 Address Bit 12

P2-5 Al3 Address Bit 13

P2-6 Al4 Address Bit 14

pP2-7 Al5 | Address Bit 15

P3-0 RXD Serial port input

Table 4.1 Alternate Port Pin Functions

31

P3-2 TnTo | External Interrupt O

P3-3 TNT1 | EXternal Interrupt 1

P3-4 TO External clock input for Timer 0

P3-5 Tl External clock input for Timer 1

P3-6 WR | External Data Memory write strobe
P3-7 RD External Data Memory read strobe

Table 4.1 (cont'd)

READ LATCH
INT. BUS D @
WRITE TO
LATCH > CL;

ADDR/DATA

Vee
CONTROL

READ }’Mﬁ

a. Port 0 Bit

ADDR/DATA

Vee

Alternate

READ LATCH:

Vec

INT. BUS

WRITE TO
LATCH

D ¢
CLK

2

]

READ Pmﬁ

b

. Port 1 Bt

ALT. OUTPUT

FUNCTION

<1

Port Pin Functions

INTERNAL PULL-UP

Vec

INTERNAL PULL-UP

CONTROL
READ LATCH r [:]MERNAL PULL-UP READ LATCH
prous— o op—] oz svs— o o
LATCH ax Mux WRITE TO CLK
0 B LATCH
= [
READ PIN READ m§
c. Port 2 Bit

I ~ ALT. INPUT

FUNCTION

d. Port 3 Bit

Figure 4.3 80C51 Port Bit Latches

but the Port 1 SFR gets ones written to it.

32

In Port 3,

if

the

bit latch contains a one, then the output level is controlled
by the signal labeled "alternate output function". The actual
pin level is always available to the pin's alternate input
function, if any.

Ports 1, 2, and 3 have internal pull-ups and Port 0 has
open drain outputs. Each I/0O line can be independently used
as an input or an output. However, Port 0 and Port 2 can not
be used as general purpose I/0 when being used as the
ADDR/DATA BUS for external memory during normal operation. To
be used as an input, the port latch must contain a one, which
turns off the output driver FET. Then, for Ports 1, 2 and 3,
the pin is pulled high by a weak internal pull-up and can be
pulled low by an external source. Port 0 differs in that its
internal pull-ups are not active during normal port operation.
The pull-up FET is used only when the port is emitting a one
during external memory accesses. Otherwise, the pull-up FET
is off.

Consequently, Port O pins that are being used as output
port lines are open-drain. Writing a one to the bit latch
leaves both output FETs off, thus the pin floats. In this
condition, it can be used as a high-impedance input. Because
Ports 1, 2, and 3 have fixed internal pull-ups, they are
sometimes called "quasi-bidirectional"” ports. When configured

as inputs, they pull high and will source current when

externally pulled Ilow. Port 0, on the other hand, 1is

considered "true" bidirectional because, when configured as an
input, it floats.

All the port latches have ones written to them by the
reset function. If a zero is subsequently written to a port
latch, it can be reconfigured as an input by writing a one to
it.

During the execution of an instruction that changes the

value in a port latch, the new value arrives during S6P2

33

(machine State 6, Phase 2) of the final cycle of the
instruction. However, port latches are sampled by their
output buffers only during Phase 1 of a clock period. During
Phase 2, the output buffer holds the value it saw during the
previous Phase 1. Consequently, the new value in the port
latch won't actually appear at the output pin until the next
Phase 1, which will be at S1P1 of the next machine cycle. The
next section contains a more detailed description of the
machine states.

The output buffers of Port 1, 2, and 3 can each drive 4
LS TTL inputs. Port 0 output buffers can each drive 8 LS TTL
inputs. They do, however, require external pull-ups to drive
NMOS inputs, except when being used as the ADDR/DATA BUS for -
external memory.

Some instructions that read a port read the latch and
others read the pin. The instructions that read the latch
rather than the pin are the "read-modify-write™ instructions

listed below.

ANL Logical AND

ORL Logical OR

XRL Logical exclusive OR

JBC Jump if bit = 1 and clear

CPL Compliment bit

INC Increment

DEC Decrement

DJNZ Decrement and jump if not zero
MOV PX.Y,C Move carry bit to bit Y of Port X
CLR PX.Y Clear bit Y of Port X

SET PX.Y Set bit Y of Port X

The reason "read-modify-write" instructions are directed to
the latch rather than to the pin is to avoid a possible
misinterpretation of the logic level at the pin. For example,
a port bit might be used to drive the base of a transistor.
When a one is written to the bit, the transistor is turned on.
If the CPU then reads the same port at the pin rather than the

latch, it will read the base voltage of the transistor and

34

!

interpret it as a zero. Reading the latch rather than the pin

will return the correct value of one.

D. CPU TIMING

All 80C51 microcontrollers have an on-chip oscillator
which can be used, if desired, as the clock source for the
CPU. To use the on-chip oscillator, connect a crystal or
ceramic resonator between the XTAL 1 and XTAL 2 pins of the
microcontroller and capacitors from each pin to ground. The
value of the crystal is not particularly important as long as
it is less than the maximum clock speed of the 80C51 and
greater than about 3 MHz. Alternatively, an external clock
can be used by connecting it to the XTAL 1 pin and leaving
XTAL 2 open (CMOS devices only).

A machine cycle consists of a sequence of six states,
numbered S1 through S6. Each state time lasts for two
oscillator periods. Thus, a machine cycle takes 12 oscillator
periods. Each state is divided into a Phase 1 and a Phase 2
half. Figure 4.4 shows the fetch/execute sequences in states
and phases for various kinds of instructions. Normally, two
program fetches are generated during each machine cycle, even
if the instruction being executed doesn't require it. If the
instruction being executed doesn't need more code bytes, the
CPU simply ignores the extra fetch and the Program Counter is
not incremented.

Execution of a one-cycle instruction (Figures 4.4a and
4.4b) begins during State 1 of the machine cycle, when the
opcode is latched into the instruction register. A second
fetch occurs during State 4 of the same machine cycle.
Execution is complete at the end of State 6 of this machine
cycle. The MOVX instructions take two machine cycles to

execute. No program fetch is generated during the second

35

cycle of a MOVX instruction. This is the conly time program
fetches are skipped. The fetch/execute sequence for MOVX
instructions is shown in Figure 4.4d.

The fetch/execute sequences are the same whether the
Program Memory is 1internal or external to the chip.
Executiontimes do not depend on whether the Program Memory is
internal or external.

Figure 4.5 shows the signal and timing involved in
program fetches when the Program Memory is external. For
external memory, the Program Memory read strobe (PSEN) 1is
normally activated twice per machine cycle. If an access to
external Data Memory occurs, two PSENs are skipped, because

the address and data bus are being used for the Data Memory

| Sz | 52 I 853] S4 I S5 l S§6] 81 I S2 I 83 I 54 | S5 I S6 l
pr pP2lpPr P21pPr pP21p1 P2\P1 P2ipP1 P2iPI P21P1 P21Pl] P21PI P21PI P21PI P2
osc

: Read opcode Read next opcode (dtscar;i)
[sr [s2 | s8 | s« | 55 | s6 |

a. 1-byte, I-cycle Instruction (e.g. INC A)

Read opcode Read 2nd byte

iszlszlss]s4|ss|scj

b. 2-byte, 1-cycle Instruction (e.g. ADD A, #daéa)

: I_ Read opcode l_ Read next opcode (discarid) Read opcode (discard) [_ Read opcode (discard)
[st | ;2 | s | s | 55 | s l st | s2 | ss | s | s [s]

c. I-byte, Z-éyck Instruction (e.g. INC DPIR) :
: l_ Read opcode r. Read next opcode (discar\id) Nf‘;i:"' l_ No Fetch :
[s1 [s2 | ss [s | &5 | o6 | & | &2 | 835 | s | 85 [ss |

| ADDRESS I : DATA I
Access External Memory

d. 1-byte, 2-cycle Instruction (MOVX)

Figure 4.4 State Sequence For 80C51 Family Devices

36

time as a Program Memory bus cycle.

One machine cycl One machine cycl

s1 | 52153 54 I 551 56| s1 I 52183 54 I 55| s6 | s1 I 52
psen [: | I I | 1 J 1

READ

Port 2 f PCH out X . PCH out X : PCH out X : PCH out X :

Data in: Data in 5 Data .uzf Data in 5
Port 0 ll O O—O-CO— O)—C)
PCL’ out PCL" out PCL out PCL’ out PCL out
PCL Val.idj\ PCL vali

a. Without a MOVX

One machine cycl One machine cycl
53| 54 I 55| 86| 5851|852 53] 54 | S5 s6| s1 | s2
psen _ [~ - | | : : L_|
READ : : l : |
Port 2 X :pcH out X :DPH out or Port 2 outX : PCH out X :
: INST in: 'Data in : INST in :
port 0 - o SN (J Co—C)
PCL out PCL:out PCL out PCL out
PCL valldtmﬁd“t PCL vali

b. With a MOVX

Figure 4.5 Bus Cycles in 80C51 Family Executing From

External Memory

access. Note that a Data Memory bus cycle takes twice as much

relative timing of the addresses being emitted at Ports 0 and

Figure 4.5 shows the

and of PSEN and ALE. ALE is used to latch the low address

byte from Port 0 into the external address latch.

Memory,

When the CPU 1is executing code from internal Program

37

PSEN is not activated and program addresses are not

emitted. However, ALE continues to be activated twice per
machine cycle and is available as a clock output signal.
Note, however, that one ALE is skipped during the execution of

the MOVX instruction.

E. TIMER/COUNTERS

The 80C51 has two 16-bit Timer/Counter registers: Timer
0 and Timer 1. Both can be configured to operate either as
timers or evént counters. The TMOD and TCON special function
registers configure and control the timers. TMOD selects one
of four possible operating modes for both timer/counters and
also provides some control functions. TCON is used to control
the timer/counters. The high nibble of TMOD corresponds to
Timer 1; the low nibble corresponds to timer 0. The four bits
of TMOD per timer are used as follows:

MSB GATE When set, requires both INTx and TRx in
TCON to enable the timer/counter. When
cleared , only TRx is used as the enable.

C/T When set, counter function is selected.
When cleared, timer function is selected.
LSB M1/MO Selects operating mode as follows:

0 0 13-bit Timer. Lower five bits of
"TLX" serves as 5-bit prescalar

along with 8-bit "THx". This mode
simulates an 8048 timer.

0 1 16-bit Timer/counter. "THx" and
"TIx" are cascaded; there 1s no
prescalar.

1 0 8-bit auto-reload Timer/counter.
"THx" holds a value which is to be
reloaded into "TLx" each time it
overflows

11 (Timer 0) TLO is an 8-bit
Timer/counter controlled by the
standard Timer 0 control bits. THO
is an 8-bit timer only controlled by
Timer 1 control bits.

(Timer 1) Timer/counter 1 stopped.
In this manner, the 80C51 can look
like it has three timer/counters.

38

The bits of TCON are arranged in pairs instead of by
nibble. Their function is defined as follows:

Bit 7 TF1 Timer 1 overflow flag. Set by hardware
on overflow. Cleared by hardware when
processor vectors to interrupt routine,
or by clearing the bit in software.

Bit 6 TR1 Timer 1 Run control bit. Set/cleared by
software to turn Timer/counter on/off

Bit 5 TFO Timer 0 overflow flag.

Bit 4 TRO Timer 0 Run control bit.

Bit 3 IE1l Interrupt 1 Edge flag. Set by hardware

when external interrupt edge detected.
Cleared when the interrupt is processed.
Bit 2 ITl Interrupt 1 Type control bit.
Set/cleared by software to specify
falling-edge/low-level triggered external

interrupts.
Bit 1 IE0 Interrupt 0 Edge flag.
Bit O ITO Interrupt 0 type control bit.

In the timer function, the register is incremented every
machine cycle. A machine cycle consists of 12 oscillator
periods, therefore the count rate is 1/12 of the oscillator
frequency. In the counter function, the register 1is
incremented in response to a O-to-1 transition at its
corresponding external input pin, TO or Tl. In this function,
the external input is sampled during S5P2 of every machine
cycle. When the samples show a high in one cycle and a low
in the next cycle, the count is incremented. The new count
value appears in the register during S3P1 of the cycle
following the one in which the transition was detected. Since
it takes two machine cycles (24 oscillator periods) to
recognize a 1-to-0 transition, the maximum count rate is 1/24
of the oscillator frequency. There are no restrictions on the
duty cycle of the external input signal. However, to ensure
that a given level is sampled at least once before it changes,
it should be held for at least one full cycle.

39

F. SERIAL INTERFACE

The serial interface is full duplex, meaning 1t can
transmit and receive simultaneously. It is also receive-
buffered, meaning it can commence reception of a second byte
before a previously received byte has been read from the
register. However, 1f the first byte still hasn't been read
by the time reception of the second byte is complete, one of
the bytes will be lost. The serial port receive and transmit
registers are both accessed via the Special Function Register
SBUF. Writing to SBUF loads the transmit register; reading
SBUF accesses a physically separate receive register.

The serial port can operate in any of four modes. In
MODE 0, the serial data enters and exits through RXD. TXD
outputs the shift clock. Eight bits are transmitted/received
(LSB first). The baud rate is fixed at 1/12 the oscillator
frequency. In MODE 1, ten bits are transmitted (through TXD)
or received (through RXD): a start bit (0), eight data bits
(LSB first), and a stop bit (1). Upon reception, the stop bit
goes into RB8 in Special Function Register SCON. The baud
rate is variable. In MODE 2, 11 bits are transmitted (through
TXD) or received (through RXD): a start bit (0), eight data
bits (LSB first), a programmable ninth data bit, and a stop
bit (1). On transmit, the ninth data bit (TB8 in SCON) can be
used, for example, to send a parity bit (P in the PSW). On
receive, the ninth data bit goes into RB8 in Special Function
Register SCON while the stop bit is ignored. The baud rate is
programmable to 1/32 or 1/64 times the oscillator frequency.
MODE 3 is identical to MODE 2 in all respects except that the
baud rate is variable. In all four modes, transmission is
initiated by any instruction that uses SBUF as a destination
register. Reception is initiated in MODE 0 by the condition

RI = 0 and REN = 1. Reception is initiated in the other modes

40

by the incoming start bit if REN = 1.

MODE 2 and MODE 3 have a special provision for
multiprocessor communications. In these modes, nine data bits
are received. The ninth goes into RBS. The port can be
programmed such that when the stop bit is received, the serial
port interrupt will be activated only 1if RB8 = 1. This
feature is enabled by setting bit SM2 in SCON. A way to use
this feature in multiprocessor systems 1s as follows:

When the master processor transmits a block of data to

one of several slaves, it first sends out an address byte

which identifies the target slave. An address byte
differs from a data byte in that the ninth bit is one in

an address byte and zero in a data byte. With SM2 = 1,

no slave will be interrupted by a data byte. An address

byte, however, will interrupt all slaves so that each
slave can examine the received byte and see if it is
being addressed. The addressed slave will clear its SM2
bit and prepare to receive the data bytes that will be
coming. The slaves that were not being addressed leave
their SM2s set and go about their business ignoring the
coming data bytes.
SM2 has no effect in MODE O and, in MODE 1, can be used to
check the validity of the stop bit. In a MODE 1 reception, if
SM2 = 1, the receive interrupt will not be activated unless a
valid stop bit is received.

The serial port control and status register is the
Special Function Register SCON. This register contains not
only the mode selection bits but also the ninth data bit for
transmit and receive (TB8 and RB8) and the serial port
interrupt bits (TI and RI). The contents of this register is
as follows:

Bits 7/6 SMO/SM1 These bits determine the mode as
follows:

41

0 0 Mode O shift register
0 1 Mode 1 8-bit UART
1 0 Mode 2 9-bit UART
11 Mode 3 9-bit UART

Bit 5 SM2 Enables the multiprocessor
communication feature in modes 2 and
3. In mode 2 or 3, 1f SM2 is set

to a one, then RI will not be
activated if the received ninth data
bit (RB8) is =zero. In Mode 1, if
sM2 = 1, then RI will not Dbe
activated if a valid stop bit was
not received. In Mode 0, SM2 should
be zero.

Bit 4 REN Enables serial reception.
Set/cleared by software to
enable/disable reception.

Bit 3 TB8 The ninth data bit that will be
transmitted in Modes 2 and 3.

Bit 2 RB8 In Modes 2 and 3, contains the ninth
data bit received. In Mode 1, RBS
contains the received stop bit. RBS8
is not used in Mode O.

Bit 1 TI Transmit interrupt flag. Set by
hardware at the end of the eighth
bit time in Mode 0, or at the
beginning of the stop bit in the
other modes in any transmission.
Must be cleared by software.

Bit O RI Receive interrupt flag. Set by
hardware at the end of the eighth
bit time in Mode 0, or halfway
through the stop bit time in the

other modes, in any serial
reception. Must be cleared by
hardware.

G. INTERRUPTS

The 80C51 provides five interrupt sources. These are the
two external interrupts, INTO and INTI, two timer interrupts
from TFO and TFl, and the serial port interrupt. The external
interrupts can be either level or transition sensitive
depending on bits ITO and IT1 in TCON. When an external

interrupt is generated, the flag that generated it is cleared

42

by the hardware when the service routine is executed only if
the interrupt was transition activated. If the external
interrupt was level activated, then the external requesting
source controls the request flag.

The timer interrupts, TFO and TFl, are set by a rollover
in their respective Timer/counter registers (except timer 0 in
Mode 3). When a timer interrupt is generated, the flag that
generated it 1is cleared by the on-chip hardware when the
service routine is executed.

The serial port interrupt is generated by logically ORing
RI with TI. Neither of these flags is cleared by hardware
when the service routine is vectored to. 1In fact, the service
routine will normally have to determine whether it was RI or
TI that generated the interrupt and the bit will have to be
cleared in software.

All of the bits that generate interrupts can be set or
cleared by software, with the same result as though it had
been set or cleared by hardware. That 1is, interrupts can be
generated or pending interrupts can be canceled in software.
Each of these interrupt sources can be individually enabled or
disabled by setting or clearing a bit in Special Function
Register IE, or all interrupts can be disabled at once. A one
in any bit position enables that interrupt. The contents of

IE are defined as follows:

Bit 7 EA Disables all interrupts when cleared.
Bit 6 Not defined

Bit 5 Not defined

Bit 4 ES Serial Port Interrupt Enable

Bit 3 ET1 Timer 1 overflow interrupt enable
Bit 2 EX1 External Interrupt 1 enable

Bit 1 ET0 Timer 0 overflow interrupt enable
Bit O EX0 External Interrupt 0 enable

Each interrupt source can also be individually programmed
to one of two priority levels by setting or clearing a bit in

Special Function register IP. A low priority interrupt can be

43

interrupted by a high priority interrupt but not by another
low priority interrupt. A high priority interrupt can't be
interrupted by any other interrupt source. If two interrupts
of the same priority level are received simultaneously, an
internal polling sequence determines which request is
serviced. Thus, within each priority, there 1is a second
priority structure determined by the polling sequence.
External Interrupt O has the highest priority within this
structure, followed by Timer/counter 0, external interrupt 1,
timer/counter 1, and finally, the serial port at the low end
of the priority spectrum. The individual bits within the IP

register are defined as follows:

Bits 7-5 Not used

Bit 4 PS serial port interrupt priority level
Bit 3 PT1 Timer 1 interrupt priority level

Bit 2 PX1 External interrupt 1 priority level
Bit 1 PTO Timer 0 interrupt priority level

Bit O PX0 External interrupt 0 priority level

The interrupt flags are sampled at S5P2 of every machine
cycle. The samples are polled during the following machine
cycle. If one of the flags was in a set condition at S5P2 of
the preceding cycle, the polling cycle will find it and the
interrupt system will generate a LCALL to the appropriate
service routine, provided this hardware-generated LCALL is not
blocked by any of the following conditions: an interrupt of
equal or higher priority already in progress, the current
polling cycle is not the final cycle in the execution of the
instruction in progress, and the instruction in progress is
RETI or any write to the IE or IP registers.

The hardware-generated LCALL pushes the contents of the
Program Counter on to the stack (but it does not save the
Program Status Word) and reloads the PC with the service

routine address. The vector addresses are as listed below:

44

SOURCEVECTOR ADDRESS

IEO 0003h
TFO 000Bh
IE1l 0013h
TF1 001Bh
RI+TI 0023h

Execution proceeds from that location until the RETI
instruction is encountered. The RETI instruction informs the
processor that this interrupt routine is no longer in
progress, then pops the top two bytes from the stack and
reloads the program counter. Execution of the interrupted
program continues from where it left off. Note that a simple
RET instruction would have returned execution to the
interrupted program but it would have left the interrupt
control system thinking the interrupt was still in progress,
making future interrupts impossible.

The external sources can be programmed to be level-
activated or transition-activated by setting or clearing bit
ITl or ITO in the TCON register. A one in ITx corresponds to
edge sensitivity. In this mode, if successive samples of the
INTx pin show a high in one cycle and a low in the following
cycle, interrupt request flag IEx in TCON is set. IEx will be
automatically cleared by the CPU when the service routine is
called. If the external interrupt is level sensitive, the
external source has to hold the request active until the
requested interrupt is actually generated. Then it has to
deactivate the request before the interrupt service routine is

completed, or else another interrupt will be generated.

H. CONCLUSION

This chapter described in detail the architecture of the
80C51 family of microcontrollers. A thorough knowledge of the
material in this chapter is imperitive in order to program the

testbench efficiently. A thorough knowledge of the 80C51

45

family instruction set is also necessary in order to use the

testbench. This material is provided in the next chapter.

46

V. 80C51 FAMILY INSTRUCTION SET

The information presented in this chapter was paraphrased
from the 80C51 data sheets published by Philips Semiconductors
in March of 1995.

A. OVERVIEW

The 80C51 instruction set is optimized for 8-bit control
applications. It provides a variety of fast addressing modes
for accessing the internal RAM to facilitate byte operations
on small data structures. The instruction set provides
extensive support for one-bit variables as a separate data
type, allowing direct bit manipulation in control and logic

systems that require Boolean processing.

B. ADDRESSING MODES

1. Direct Addressing

In direct addressing, the operand is specified by an
eight-bit address field in the instruction. Only internal
Data RAM and SFRs can be directly addressed.

2. Indirect Addressing

In indirect addressing, the instruction specifies a
register which contains the address of the operand. Both
internal and external RAM can be indirectly addressed. The
address register for eight-bit addresses can be RO or R1 of
the selected bank, or the stack pointer. The address register
for 16-bit addresses can only be the 16-bit "data pointer"
register, DPTR.

3. Register Instructions

The register banks, containing registers RO through R7,

47

can be accessed by certain instructions which carry a three-
bit register specification within the opcode of the
instruction. Instructions that access the registers this way
are code—efficient because this mode eliminates an address
byte. When the instruction is executed, one of the eight
registers in the selected bank is accessed. One of four banks
is selected at execution time by the two bank select bit in

the PSW.

4. Register-Specific Instructions

Some instructions are specific to a certain register.
For example, some instructions always operate on the
Accumulator, Data Pointer, etc. and no address byte is needed
to point to it. The opcode itself does that. Instructions
that refer to the Accumulator as A assemble as Accumulator

specific opcodes.

5. Immediate Constants

The value of a constant can follow the opcode in Program
Memory. For example, MOV A, #100 loads the Accumulator with
the decimal number 100. The same number could be specified in
hex digits as 64h.

6. Indexed Addressing

Only Program Memory can be accessed with indexed
addressing and it can only be read. This addressing mode 1is
intended for reading look-up tables in Program Memory. A 16-
bit base register (either DPTR or the Program Counter) points
to the base of the table and the Accumulator is set up with
the table entry number. The address of the table entry in
Program Memory is formed by adding the Accumulator data to the

base pointer.

48

Another type of indexed addressing is used in the "case
Jump" instruction. In this case, the destination address of
a jump instruction is computed as the sum of the base pointer

and the Accumulator.

C. ARITHMETIC INSTRUCTIONS

The menu of arithmetic instructions is listed in Table
5.1. The table indicates the addressing modes that can be
used with each instruction to access the <byte> operand. For

example, the ADD A,<byte> instruction can be written as:

ADD A, 7Fh (direct addressing)

ADD A, QRO (indirect addressing)
ADD A,R7 (register addressing)
ADD A,#127 (immediate constant)

The execution times listed in the table assume a 12 MHz clock
frequency. All of the arithmetic instructions execute in 1 us
except the INC DPTR instruction, which takes 2 us, and the
Multiply and Divide instructions, which take 4 ps. Note that
any byte in the internal Data Memory space can be incremented
without going through the Accumulator.

One of the INC instructions operates on the 16-bit Data
Pointer. The Data Pointer 1s used to generate 16-bit
addresses for external memory. Therefore, being able to
increment it in one 16-bit operation is a useful feature. The
MUL AB instruction multiplies the Accumulator by the data in
the B register and puts the 16-bit product into the
concatenated B and accumulator registers. The DIV AB
instruction divides the Accumulator by the data in the B
register and leaves the quotient in the Accumulator and the
eight-bit remainder in the B register.

O0ddly enough, DIV AB finds 1less use in arithmetic
"divide" routines than in radix conversions and programmable

shift operations. In shift operations, dividing a number by

49

on shifts it n bit to the right. Using DIV AB to perform the

division completes the shift in 4 ps and leaves the B register
holding the bits that were shifted out. The DA A instruction

ADD A,<byte> A=A+<byte> X b4 b4 X 1
ADDC A, <byte> =A+<byte>+C X X X X 1
SUBB A, <byte> | A=A-<byte>-C X X X X 1
INC A A=A+1 Accumulator Only 1
INC <byte> byte=byte+l b4 X X 1
INC DPTR DPTR=DPTR+1 Data Pointer Only 2
DEC A A=A-1 Accumulator Only 1
DEC <byte> byte=byte-1 b4 X X 1
MUL AB B:A=BxA ACC and B Only 4
DIV AR A=Int [A/B] ACC and B Only 4
B=Mod [A/B]
DA A Decimal Adj. Accumulator Only 1

Table 5.1 Arithmetic Instructions

is for BCD arithmetic operations. In BCD arithmetic, ADD and
ADDC instructions should always be followed by a DA A
operation to ensure the result is also in BCD. The DA A
operation produces a meaningful result only as the second step

in the addition of two BCD bytes.

D. LOGICAL INSTRUCTIONS
Table 5.2 shows the 80C51 logical instructions. The

instructions that perform Boolean operations (AND, OR,

Exclusive OR, NOT) on bytes perform the operation on a bit-by-

50

bit basis. That is, if the Accumulator contains 00110101b and
the byte contains 01010011b, then ANL A,<byte> will leave the
Accumulator holding 00010001b.

The addressing modes that can be used to access the
<byte> operand are as follows for the ANL instruction:

ANL A,7Fh (direct addressing)

ANL A, (@RIl (indirect addressing)
ANL, A,R6 (register addressing)
ANL A, #53h (immediate constant)

All of the logical instructions that are Accumulator-specific

execute in 1 ps (assuming a 12 MHz clock). The others take 2

us.

ANL A, <byte> A=A AND <byte> X X X X 1
ANL <byte>,A <byte>=<byte> AND A X 1
ANL <byte>, #data byte=byte AND #data X 2
ORL A, <byte> B=A OR <byte> X X X X 1
ORL <byte>,A <byte>=<byte> OR A X 1
ORL <byte>, #data byte=byte OR #data X 2
XRL A, <byte> A=A XOR <byte> X X X X 1
XRL <byte>,A <byte>=<byte> XOR A X 1
XRL <byte>, #data byte=byte XOR #data X 2
CLR A A = 00h Accumulator Only 1
CPL A A = NOT A Accumulator Only 1
RL A Rot. A left 1 bit Accumulator Only 1
RLC A Rot. left through C Accumulator Only 1
RR A Rot. A right 1 bit Accumulator Only 1
RRC A "{Rot. A right thru C Accumulator Only 1
SWAP A Swap nibbles in A Accumulator Only 1

Table 5.2 Logical Instructions

51

Boolean operations can be performed on any byte in the
internal Data Memory space without going through the
Accumulator. The XRL <byte>, #data instruction, for example,
offers a quick and easy way to invert port bits, as 1in XRL
Pl,#0FFh. If the operation is in response to an interrupt,
not using the Accumulator saves the time and effort to push it
onto the stack in the service routine.

The Rotate instructions (RL A, RLC A, etc.) shift the
Accumulator one bit to the left or right. For a left
rotation, the MSB rolls into the LSB position. The SWAP A
instruction interchanges the high and low nibbles within the
Accumulator. This is a useful ©operation for BCD
manipulations. For example, 1f the Accumulator contains a
binary number which is known to be less than 100, it can be
quickly converted to BCD by the following code:

MOVE B, #10
DIV AR
SWAP A
ADD A,B

Dividing the number by ten leaves the tens digit in the low
nibble of the Accumulator and the ones digit in the B
register. The SWAP and ADD instructions move the tens digit
to the high nibble of the Accumulator and the ones digit to
the low nibble.

E. DATA TRANSFER INSTRUCTIONS

1. Internal RAM

Table 5.3 shows the instructions that are available for
moving data around within the internal memory spaces and the
addressing modes than can be used with each one. With a 12
MHz clock, all of these instructions execute in either 1 or 2

us.
The MOV <dest>,<src> instruction allows data to be

52

transferred between any two internal RAM or SFR locations
without going through the Accumulator. Remember, the upper
128 bytes of data RAM can be accessed only by indirect

addressing and SFR space only by direct addressing.

MOV A,<src> A=<src> X X X X 1
MOV <dest>,A <dest>=A X X X 1
MOV <dest>,<src> <dest>=<src> X X X X 2
MOV DPTR, #datalé DPTR=constant X 2
PUSH <src> INC SP:MOV @SP, src X 2
POP <dest> MOV dest,@SP:DEC SP X 2
XCH A,<byte> A & byte exchanged X X X 1
XCHD A, @Ri A & @Ri exchange X 1
low nibbles

Table 5.3 Internal RAM Data Transfer Instructions

Note that in the 80C51 devices, the stack resides in on-
chip RAM and grows upwards. The PUSH instruction first
increments the Stack Pointer (SP), then copies the byte into
the stack. PUSH and POP use only direct addressing to
identify the byte being saved or restored but the stack itself
is accessed by indirect addressing using the SP register.
This means the stack can go into the upper 128 bytes of RAM,
if they are implemented, but not into the SFR space.

The upper 128 bytes of RAM are not implemented in the
80C51 nor in its ROMless or EPROM counterparts. With these
devices, if the SP points to the upper 128 bytes, PUSHed bytes
are lost and POPed bytes are indeterminate.

The data transfer instructions include a 16-bit MOV that

can be used to initialize the Data Pointer (DPTR) for look-up

53

tables in program memory or for 16-bit external accesses.
The XCH A,<byte> instruction causes the Accumulator and
the addressed byte to exchange data. The XCHD A,QRiL
instruction is similar but only the low nibbles are exchanged.
To see how XCH and XCHD can be used to facilitate data
manipulations, consider first the problem of shifting an
eight-digit BCD number two digits to the right. This can be

done with MOVs or by making use of XCH instructions as

follows:
MOV A, 2Eh CLR A
MOV 2Eh, 2Dh XCH A, 2Bh
MOV 2Dh, 2Ch XCH A, 2Ch
MOV 2Ch, 2Bh XCH A, 2Dh
MOV 2Bh, #0 XCH A, 2Eh

Both methods require five lines of code but the use of the XCH
instruction is more efficient. Doing the routine with direct
MOVs uses 14 code bytes and 9 ps of execution time (assuming
a 12 MHz clock). The same operation with XCHs uses only 9

bytes and executes in 5 us, almost twice as fast.

2. External RAM

Table 5.4 shows the data transfer instructions that
access external data memory. Only indirect addressing can be
used. The choice is whether to use a one-byte address, @Ri,
where Ri can be either RO or R1 of the selected register bank,
or a two-byte address, @DPTR. The disadvantage of using 16-
bit addresses if only a few Kbytes of external RAM are
involved is that 16-bit addresses use all eight bits of Port
2 as address bus. On the other hand, eight-bit addresses
allow one to address a few bytes of RAM without having to
sacrifice all of Port 2. All of these instructions execute in
2 pus with a 12 MHz clock. Note that in all external data RAM
accesses, the Accumulator is always either the destination or

source of the data.

54

The read and write strobes to external RAM are activated
only during the execution of a MOVX instruction. Normally

these signals are inactive and, if they're not going to be

used at all, their pins are available as extra I/0 .lines.

8 Bits MOVX A, @QRi Read ext RAM @Ri 2
8 Bits MOVX @Ri,A Write ext RAM @Ri1 2
16 bits |MOVX A, @DPTR Read ext RAM (@DPTR 2
16 Bits |MOVX @DPTR,A Write RAM @DPTR 2

Table 5.4 External RAM Data Transfer Instructions

Table 5.5 shows two instructions that are available for
reading lookup tables 1in program memory. Since these
instructions access only program memory, the lookup tables can
only be read, not updated. If the table access is to external

program memory, then the read strobe is PSEN.

MOVC A, @GA+DPTR Read prog memcry at (A+DPTR) 2

MOVC A, GA+PC Read prog memory at (A+PC) 2
Table 5.5 Lookup Table Read Instructions

The mnemonic is MOVC for "move constant”. The first MOVC
instruction in Table 5.5 can accommodate a table of up to 256
entries. The number of the desired entry is loaded into the
Accumulator and the Data Pointer is set to point to the
beginning of the table. The MOVC A, GA+DPTR copiles the desired
table entry into the Accumulator.

The other MOVC instruction works the same way, except the

55

Program Counter (PC) is used as the table base and the table

is accessed through a subroutine. First, the number of the
desired entry 1is loaded into the Accumulator, then the
subroutine is called:

MOV A, ENTRY NUMBER

CALL TABLE
The subroutine "TABLE" would look like this:
TABLE: MOVC A, @A+PC
RET

The table itself immediately follows the RET (return)
instruction in program memory. This type of table can have up
to 255 entries, numbered 1 through 255. Number O cannot be
used because at the time the MOVC instruction is executed, the
PC contains the address of the RET instruction. An entry

numbered 0 would be the RET opcode itself.

F. BOOLEAN INSTRUCTIONS |

80C51 devices contain a complete Boolean (single-bit)
processor. The internal RAM contains 128 addressable bits and
the SFR space can support up to 128 addressable bits as well.
All of the port lines are bit-addressable and each one can be
treated as a separate single-bit port. The instructions that
access these bits are not just conditional branches but a
complete menu of move, set, clear, compliment, OR, and AND
instructions. These kinds of bit operations are not easily
obtained in other architectures with any amount of byte-
oriented software. The instruction set for the Boolean
processor is shown in Table 5.6. All bit accesses are by
direct addressing.

Note how easily an internal flag can be moved to a port
pin:

MOV C, FLAG
MOV P1.0O,C

56

In this example, FLAG is the name of any addressable bit in
the lower 128 or in SFR space. An I/O line (the LSB of Port
1, in this case) is set or cleared depending on whether the
flag bit is 1 or O.

The Carry bit in the PSW is used as the single-bit
Accumulator of the Boolean processor. Bit instructions that
refer to the Carry bit as C assemble as carry-specific
instructions (CLR C, etc.). The Carry bit also has a direct
address because it resides in the PSW register which is bit-
addressable.

Note that the Boolean instruction set includes ANL and
ORL operations but not the XRL (exclusive OR) operation. An
XRL operation is simple to implement in software. Suppose,
for example, it is required to form the exclusive OR of two
bits:

C = bitl XRL bit2.
The software to do this could be as follows:

MOV C,bitl

JNB bit2,OVER
CPL C

OVER: (continue)

First, bitl is moved to the carry. If bit2 = 0, then C now
contains the correct result. That is, bitl XRL bit2 = bitl if
bit2 = 0. On the other hand, if bit2 = 1, C contains the
compliment of the correct result. It need only be inverted
(CPL C) to complete the operation. This code uses the JNB
instruction, one of a series of bit-test instructions which
execute a jump if the addressed bit is set (JC, JB, JBC) or if
the addressed bit is not set (JNC, JNB). In the above case,
bit 2 is being tested and, if bit2 = 0, the CPL instruction is
Jjumped over.

JBC executes the jump if the addressed bit is set and

also clears the bit. Thus, a flag can be tested and cleared

57

in one operation. All the PSW bits are bit-addressable and

available to the bit-test instructions.

ANL C,bit C C AND bit 2
ANL C,/bit C = C AND (NOT bit) 2
ORL C,bit C = C OR bit 2
ORL C,/bit C = C OR (NOT bit) 2
MOV C,bit C = bit 1
MOV bit,C bit = C 2
CLR C cC=20 1
CLR bit bit = 0 1
SETB C c =1 1
SETB bit bit =1 1
CPL C C = NOT C 1
CPL bit bit = NOT bit 1
JC rel Jump if C =1 2
JNC rel Jump if C = 0 2
JB bit,rel Jump if bit =1 2
JNB bit,rel Jump if bit = 0 2
JBC bit,rel Jump if bit=1; CLR bit 2

Table 5.6 Boolean Instructions

The destination address for these jumps is specified to
the assembler by a label or by an actual address 1In program
memory. However, the destination address assembles to a
relative offset byte. This is a signed (two's compliment)
offset byte which is added to the PC in two's compliment
arithmetic if the jump is executed. The range of the jump 1is

-128 to +127 program memory bytes, relative to the first byte

58

following the instruction.

G. JUMP INSTRUCTIONS

Table 5.7 shows the list of unconditional Jjumps with
their respective execution times for a 12 MHz clock. The
table lists a single "JMP addr" instruction but in fact there
are three (SJMP, LJMP, and AJMP), which differ only in the
format of the destination address. JMP is a generic mnemonic
which can be used if the programmer does not care which way
the jump is encoded.

The SJMP instruction encodes the destination address as
a relative offset. The instruction is two bytes long,
consisting of the opcode and the relative offset byte. The
jump distance 1is limited to a range of -128 to +127 bytes,
relative to the instruction following the SJIMP.

The LJMP instruction encodes the destination address as
a 16-bit constant. The instruction 1is three bytes long,
consisting of the opcode and two address bytes. The
destination address can be anywhere in the 64K program memory
space.

The AJMP instruction encodes the destination address as
an 1ll-bit constant. The instruction 1is two bytes long,
consisting of the opcode, which itself contains three of the
eleven address bits, followed by another byte containing the
low eight Dbits of the destination address. When the
instruction is executed, these eleven Dbits are simply
substituted for the low eleven bits of the Program Counter.
The high five bits remain the same. Hence, the destination
has to be within the same two Kbyte block as the instruction
following the AJMP.

In all cases, the programmer specifies the destination

address to the assembler in the same way, as a label or as a

59

16-bit constant. The assembler will put the destination
address into the correct format for the given instruction. If
the format required by the instruction will not support the

distance to the specified destination address, a "Destination

out of range" message is written to the List file.

JMP addr Jump to addr 2
JMP @A + DPTR Jump to A + DPTR 2
CALL addr Call subroutine at addr 2
RET Return from subroutine 2
RETI Return from interrupt 2
NOP No operation 1

Table 5.7 Unconditional Jumps

The JMP @A+DPTR instruction supports case jumps. The
destination address is computed at execution time as the sum
of the 16-bit DPTR register and the Accumulator. Typically,
the DPTR is set up with the address of a jump table. 1In a
five-way branch, for example, an integer 0 through 4 is loaded
into the Accumulator. The code to be executed might be as
follows:

MOV DPTR, #JUMP TABLE
MOV A, INDEX NUMBER
RL A

JMP @A+DPTR

The RL A instruction converts the index number (zero through
four) to an even number in the range zero to eight because
each entry in the jump table is two bytes long:

JUMP TABLE:
AJMP CASE
AJMP CASE
AJMP CASE
AJMP CASE
AJMP CASE

S WO

60

There is only a single "CALL addr" instruction listed in
Table 5.7 but there are actually two of them, LCALL and ACALIL,
which differ in the format in which the subroutine address is
given to the CPU. Call is a generic mnemonic which can be
used if the programmer does not care which way the address is
encoded.

The LCALL instruction uses the 16-bit address format and
the subroutine can be anywhere in the 64-Kbyte program memory
space. The ACALL instruction uses the 1l-bit format and the
subroutine must be 1in the same 2-Kbyte Dblock as the
instruction following the ACALL. In either case, the
programmer specifies the subroutine address to the assembler
in the same way, as a label or as a 16-bit constant. The
assembler will put the address into the correct format for the
given instructions.

Subroutines should end with a RET instruction which
returns execution to the instruction following the CALL. RETI
is used to return from an interrupt service routine. The only
difference between RET and RETI 1is that RETI tells the
interrupt control system that the interrupt in progress is
done. If there is no interrupt in progress at the time RETI
is executed, then the RETI is functionally identical to RET.

Table 5.8 shows the list of conditional jumps available
to the 80C51 programmer. All of these jumps specify the
destination address by the relative offset method and are
limited to a jump distance of -128 to +127 bytes from the
instruction following the conditional jump instruction. The
user specifies to the assembler the actual destination address
the same way as the other jumps, as a label or as a 16-bit

constant.

61

JZ rel Jump if A =0 Accumulator only 2

JNZ rel Jump if A # O Accumulator only 2

DJNZ byte,rel |Decrement & X X 2
jump if not O

CJINE Jump if A = X X 2

A,byte, rel byte

CJINE Jump if byte X X 2

byte, #data,rel | # #data
Table 5.8 Conditional Jump Instructions

There 1s no Zero bit 1in the PSW. The JZ and JNZ
instructions test the Accumulator.data for that condition.

The DJNZ instruction (Decrement and Jump if Not Zero) is
for loop control. To execute a loop N times, load a counter
byte with N and terminate the loop with a DJNZ to the
beginning of the loop, as shown below for N = 10.

MOV COUNTER, #10
LOOP: (begin loop)

(end loop)
DJNZ COUNTER, LOOP
(continue)

The CJNE instruction (Compare and Jump if Not Equal) can
also be used for loop control. Two bytes are specified in the
operand field of the instruction. The jump is executed only
if the two bytes are not equal. Another application of this
instruction is in "greater than/less than" comparisons. The
two bytes in the operand field are taken as unsigned integers.
If the first is less than the second, then the Carry bit is

set. If the first is greater than or equal to the second, the

62

carry bit 1is cleared.

H. CONCLUSION

The material in this chapter, along with a good working
knowledge of the microcontroller architecture and testbench
design, 1is sufficient to program the testbench to perform
useful functions. In order to download and run programs, a
good knowledge of the operating system 1is required. This

material is presented in the next chapter.

63

64

VI. THE OPERATING SYSTEM

A. OVERVIEW

The operating system chosen for the testbench was written
by Mr. Paul Stoffregen of Oregon State University (0SU).
PAUIMON, as it is called, is available as shareware from the
OSU Electrical and Computer Engineering Department homepage
(http://www.ece.orst.edu/~sllu/eced471f.html). It is a simple
monitor program which provides enough on-line help to negate
the need for much documentation. All of the information in
this section comes from the PAULMON documentation written by
Mr. Stoffregen.

PAULMON is designed exclusively for the 8051 family of
microprocessors and reqguires the following hardware

configuration:

* External EPROM only; pin EA on the microprocessor
must be connected to ground,

* An 8K x 8 byte EPRCM located at 0000h,

* External RAM located at 2000h,

* A single address space; signals PSEN and READ must
be logically ORed together,

* Communication to the user wvia the built-in UART of
the microcontroller. Typically, a PC 1is used with a
terminal program, an 8051 assembler, and a text editor,
% A MAX232 or MAX233 serial line driver and receiver to

interface the 80C51 to the PC must be used. No
handshaking is used. The Dbaud rate 1is chosen
automatically.

B. FEATURES

1. Automatic Baud Rate Detection

This code was originally written by Mr. Kei-Yong Khoo.
It is run immediately after a system reset. It waits for a
<RETURN> character and uses it to calculate the timer #1

reload value. It requires only one character and stores the

65

reload value in four memory locations in internal RAM (78h,
79h, 7Ah, and 7Bh). These four locations are unlikely to be
changed during the execution of a program or while the
debugger is running. When another reset occurs, without
removing the power, the program looks at these four locations.
If all four agree, then it uses that reload value and does not
require another keystroke. Occasionally, with crystal values
which produce exact reload values (such as 7.3728 MHz), the
baud rate detection routine may not correctly calculate the
reload value. Garbage will get printed all over the screen.
If this occurs, switch off the power and start over. The
advantage of crystals such as the 7.3728 MHz is that they
allow transmission speeds of 9600 and 19200 baud. It is
highly recommended that the highest possible baud rate be used
with this debugger as it tends to print quite a bit of text to

the screen.

2. On-Line Help

By typing '?' at the main menu, a help screen summarizing
the available commands is printed. On-line help 1s also
available regarding the single-step execution feature. This
help is accessed by typing '?' Jjust after using the 'R?
command. While in the single-step mode, a summary of commands

is also available, again by typing '?'.

3. The <ESC> Key

The <ESC> key is supported extensively. It will abort
all commands from any prompt. It will stop the list and hex
dump commands in the middle of their printing. It will also
interrupt the printing of text to the screen! This is useful
at slow baud rates because a full screen of text can take

quite a while to print at 300 baud.

66

4. The Download Program Command (type 'D')

This allows you to send the object code from the
assembler to the external RAM. The object file must be a
standard Intel hex format file, such as the .obj file created
by the Pseudo-Assembler, by Pseudo-Corp. The file must be
sent as an ASCII transfer. A protocol such as XMODEM is used.
Pressing the <ESC> key at any time will abort the transfer.
Please note that most communications programs use the <ESC>
key to abort the transfer. In this case, the first <ESC> will
halt the terminal; pressing it again will abort the receive
process at the microcontroller. Unlike some other monitors,
PAULMON will recognize the <ESC> key anywhere in the middle of

the incoming data, not just at the beginning of a line.

5. The Run Program Command (Type 'R')

The run command allows the execution of a user program.
Two types of run are supported, normal and single-step. The
single-step mode is explained later, as it is fairly complex.
During a normal run, the equivalent of an LCALL to the user
code 1is given. During the execution of the program, the
debugger has no control of the system unless the program calls
one of the subroutines offered by the debugger in the jump
table at location 0030h. After specifying which run mode is
needed, a prompt appears for the location of the program to be
executed with the current memory pointer value as the default
choice. As is the case at all prompts, the <ESC> key will
abort the run command. It is interesting to note that the run
command leaves timer #1 in auto-baud rate generation mode. If
serial communication is desired at the same baud rate as that
used for the debugger, timer #1 need not be given a new reload
value. It is recommended that the character input and output

routines from the debugger be used via the jump table.

67

6. The New Memory Location Command (Type 'N')

The debugger operates with a pointer to the data memory
with which you are working. This pointer is used by the 1list
and hex dump command. It is also the default run location.
The pointer is incremented as memory is viewed or modified.

Just type 'N' to change it.

7. The List Command (Type 'L")

This debugger gives you the ability to list the program
code directly from memory. All the 8051 mnemonics are
supported, as well as the names of the special function
registers. Bit addressable locations are displayed using the
standard syntax (e.g. PWS.2 or 20.5) but individual bit
location names are not supported (e.g. SCON.O will print in
place of RI). The original labels used in the source code
cannot be printed. Instead, the memory locations are
displayed. Other special Intel assembly formats, such as $
and CALL, are not supported. However, the list command can
provide a reassuring look at the program directly from the

memory.

8. The Hex Dump Command (Type 'H')

By typing 'H', the next 256 bytes of RAM are dumped to
the screen in hex and ASCII. The <ESC> key must be pressed to
abort the printout.

9. The Edit Command (Type 'E')

This command makes it possible to change the values of
memory locations in the external RAM. The old value at each
location is displayed. If <ESC> is pressed, the value at the

current location is not changed.

68

10. The Jump Table

Despite the use of the word jump, the user must LCALL to
these locations. The individual locations contain jumps to
the subroutines, which all terminate with RET. The table
provides the user with a memory location to call that WILL NOT

CHANGE if the debugger is reassembled. The routines available

are:

0030h: Cout Sends the byte in Acc to the serial
port

0032h: Cin Waits for a character from the
serial port, returns it in Acc

0034h: pHex Prints the two digit hex value in
Acc to the serial port

0036: pHex16 Prints the four digit hex value in
DPTR to the serial port

0038: pString Prints the string in code memory
pointed to by DPTR to the serial
port. The string must terminate
with 00h or a high bit set.

003Ah: gHex Gets a two digit hex wvalue from the
serial, returned in Acc.

003C: gHex16 Gets a four digit hex value from the
serial port, returned in DPTR

003Eh: Esc Checks to see if the <ESC> key is

waiting in SBUF. Clears the buffer
if it is and returns with carry set.
Otherwise, it leaves SBUF untouched
and returns with C = 0.

0040: Upper Converts character in Acc to
uppercase if it is lowercase
0042: Init Automatic baud rate detection

The memory location can be placed directly in the code or an

EQU statement can be used to make the code more readable. For

example:
Program: .EQU gHex16, 003Ah ;this makes the code
nice

MOV DPTR, #StrLoc ;Load DPTR
LCALL gHex16 ;print the DPTR
MOV A, #13
LCALL 0030h ;print a <RET>
LCALL 0038h ;print the string
RET Strloc: .DB "This is my String.",0

69

Most of these routines leave the registers unchanged. However,
it is a good idea to consult the source code just to be sure.
In particular the pHex routine destroys the contents of the

accumulator.

11. Single-Step Mode
Documentation on this feature is not available. This
feature has not been debugged completely. It works but beware

of errors.

C. CONCLUSION

The previous four chapters provided specific information
about the testbench, the 87C51 microcontroller, the
instruction set, and the operating system respectively. This
information is sufficient to program the testbench to perform
any test within the design limitations. The next chapter
contains a description of how to actually use the testbench to

test two specific SRAM chips.

70

VII. CIRCUIT TESTING USING THE TESTBENCH

The testbench is intended to be used to test digital
electronic circuits for sensitivity to Single Event Upsets
(SEUs). To reiterate, SEUs are random changes in the stored
logic value due to the impact of a subatomic particle. These
particles are prevalent in the space environment, especially
at geosynchronous altitudes. Any integrated circuit can be
affected by SEUs, though digital logic storage elements such
as registers and memories have a higher probability of
experiencing an SEU. This testbench is primarily intended to
test logic storage devices such as memory chips.

The basic testing algorithm for a memory chip is to write
some data to each address location, then continually cycle
through the addresses while reading the stored data. This is
to be done while the chip is being irradiated. If an SEU
occurs, the value read from the chip will be different from
what was written. The address and the data value will then be
sent to the operator via the serial port. Once the data value
has been corrected, the algorithm continues until the next SEU
is detected.

DRAMs present a special challenge to the testbench.
These circuits must be refreshed continually or the data will
fade away. Reading any address refreshes that address. When
these memories are included in the circuit, a refresh circuit
must be used. Every few milliseconds, this circuit refreshes
the addresses either consecutively or a whole row at a time.
During this time, the memory device is unavailable to the rest
of the circuit. The testbench itself does not have any
capability to generate refresh cycles. It may be possible to
create a software-generated refresh signal by making use of

the built-in timers of the 87C51 and the corresponding

71

interrupt. A second possibility is to build a refresh circuit
on an adaptor board mounted in-line. A programmable 50% duty
cycle clock can be programmed to come out of port 1, pin 0 of
the microcontroller. It may be possible to use this signal to
generate a periodic refresh cycle. Even without a refresh
circuit, it may still be possible to test these devices on the
testbench because the testing algorithm regularly cycles
through all the addresses. The problem is to access all the
addresses within the refresh period. Whether or not that is
possible depends on the particular DRAM being tested and the

efficiency of the code.

A. SETTING UP THE TESTBENCH

The following steps are required prior to performing any
tests with the testbench. The operating system is loaded into
the EPROM so it doesn't need to be reloaded. However, all
other programs must be downloaded into RAM from the terminal.
A portable 386 computer running Windows 3.1 is used as the
terminal. All the programs required to operate the testbench
are located in a directory called tbench. Chapter 6 contains

more information on using the operating systen.

1. Connect the Testbench to the Terminal and the UUT

A cable with a 25-pin sub-D RS-232 type connector on one
end and a 9-pin sub-D connector on the other is required to
connect CONN O of the testbench to the COMM1 port of the PC.
The Unit-Under-Test (UUT) will have specific cabling

requirements which are discussed in other sections.

2. Configure the Terminal
The Windows 3.1 terminal program should load

automatically upon boot-up because the icon appears in the

72

|

startup menu. Open the terminal configuration file
tbench. trm. This defines the baud rate, parity bit, data
bits, and communication port. The portable PC has a maximum
baud rate of 9600 baud.

3. Establish Communications

Turn on the testbench. The monitor program needs a
return character to be sent in order to calculate the baud
rate and establish communications. Press return and the

welcome message should appear.

4. Download the Test Program

Type "d" to send a file to the testbench. A prompt will
appear asking for a .hex file. Press ALT-T to pull down the
transfer menu and select Send Text File. Select the desired
file and press return. It can be viewed by typing "L" and

specifying the location.

5. Run the Test Program

The test program can be run by typing "R" and providing
the memory location of the code. RAM begins at address 2000h,
thus this is the most likely addresswhere the program will

reside.

B. THE MOTOROLA 256 X 16 SRAM MEMORY CHIP

1. Description

The Motorola 256 X 16 SRAM chip tested as part of this
project is a gallium arsenide unit out of Motorola's DSP
component library. While still a proprietary device, Motorola
agreed to grant NPS researchers limited access to this design
in order to test the LT GaAs fabrication process. This

circuit was never originally intended to be packaged

73

separately, though. The circuit has insufficient output
drivers to drive TTL inputs and uses input and output logic
levels of 0 and 0.9-2.0 volts. To complicate matters further,
the chip was not available in a package, only as an unpackaged
die.

The chips were packaged in a 68-pin quad flat-pack by a
third party vendor. This package turned out to be unusual and
no chip carriers were available for it. Therefore, the
challenge this chip presented was to design a chip carrier
that could be placed in the particle bean. In addition,
adaptor boards had to be fabricated to convert the input and

output logic levels and to provide output drive capability.

2. Pin Assignments

The pin assignments are provided in Table 7.1 and the

location of the pins is shown in Figure 7.1. Notice that

there is no marker to designate pin 1 once the pins are cut
from the pin die. This pin must be marked prior to cutting it

loose.

27 44

Figure 7.1 Motorola Pin Locations

74

1 N/C 18 N/C 35 N/C 52 N/C

2 Vdd-SRAM [19 WE 36 Vdd-DVR 53 D3-IN
3 Vdd-SRAM || 20 | VAd-SRAM || 37 D8-0UT 54 D4-IN
4 N/C 21 | GND-SRAM || 38 D9-0UT 55 D5-IN
5 N/C 22 A7 39 D10-0UT 56 D6-IN
6 Vdd-SRAM || 23 A6 40 D11-0UT 57 D7-IN
7 GND-SRAM |[24 GND-DVR 41 D12-0UT 58 D8-IN
8 A0 25 DO-0UT 42 D13-0UT 59 D9-IN
9 N/C 26 N/C 43 N/C 60 N/C
10 Al 27 D1-0UT 44 D14-0UT 61 D10-IN
11 A2 28 D2-0UT 45 D15-0UT 62 D11-IN
12 A3 29 D3-0UT 46 GND-DVR 63 D12-IN
13 Al 30 D4-0UT 47 | Vdd-SRAM || 64 D13-IN
14 Ab 31 D5-0UT 48 | GND-SRAM | 65 D14-IN
15 GND-CLK 32 D6-0UT 49 DO-IN 66 D15-IN
16 CLK 33 D7-0UT 50 D1-IN 67 | GND-SRAM
17 vVdd-CLK 34 Vdd-DVR 51 D2-IN 68 | VDD-SRAM

Table 7.1 Motorola SRAM Pin Assignments

3. Hardware Adapters

Logic level translators are required on both the input
and output data buses and the address bus. The testbench uses
TTL logic levels, i.e. 0-0.8V and 2.0-5V. The Motorola 4K
SRAM uses 0V and 0.9-2V logic levels. In order to translate
the logic levels, a string of two diodes and a resistor 1is
used as shown in Figure 7.2. The diodes will drop
approximately 0.7V each when turned on resulting in a 1.4V

level for a logic one. This translation circuitry is placed

75

Input

vdd

1 Kohm 1 Kohm

Output Input

Zig; Ref. Voltage Output
O

Logic Translation Circuitry Output Drive and Logic translation Circuit

Figure 7.2 Logic Translation Circuitry Required For The
Motorola 4K SRAM (after Stanley, 1989, pg 263)

on an adaptor board that mounts in-line, rather than as part
of the testbench.

The output drivers that are provided with the chip were
never intended to drive external circuitry since this device
was never intended to be packaged separately. Therefore
comparators are used on the output as shown in Figure 7.2 to
provide both drive capability and logic translation.

The Motorola SRAM chip requires a data-in and a data-out
bus as well as an address bus. Timing requirements of the
SRAM eliminate the possibility of using internal address bus
available at CONN 2. The chip requires a clock signal as well
as the chip enable and write enable signals. The address and
write enable lines must be changed when the clock is low. The
address decoders and bit lines are precharged high during the
clock-low period. The actual address is decoded when the
clock is high. Data is either written (WE high) or read (WE
low) during the high period of the clock. There is no clock
signal available on the testbench so it must be simulated in
software. Unfortunately, this is a multi-step process which
negates the use of the address bus. The address bus of the
SRAM is connected to CONN 3 with the adaptor board mounted in-

line. A short 64-conductor ribbon connector is used between

76

the testbench and the adaptor board. A 50-conductor ribbon
cable connects the adaptor board to the chip carrier board.
The low byte of CONN 3 provides the address and the next two
bits provide the write enable and clock signals. The DATA-IN
Bus (to the SRAM) is connected to CONN 4 and the DATA-OUT Bus
(from the SRAM) is connected to CONN 5. The adaptor boards
are mounted in-line. IMPORTANT! It is physically possible to
connect the chip carrier board directly to the testbench.
Doing this will likely damage or destroy the Motorola SRAM

chip due to the excess voltage.

4. Testing Algorithm
Figure 7.3 shows a flow chart for testing the Motorola

SRAM chip. The actual code can be found in Appendix C.

C. THE VITESSE SRAM MEMORY CHIP

1. Description

The Vitesse SRAM chip is, essentially, the model
VS12G422T IC but it has been packaged by a third-party wvendor.
It is important to note, however, that the pin assignments are
not as originally specified by Vitesse. Vitesse originally
used a standard 22-pin DIP package. The chips tested in this
project were 1in a 28-pin DIP package. The actual pin
assignments are provided in the next section.

The chip is a very high speed (5 to 8 ns access times),
TTL-compatible SRAM fabricated using gallium arsenide. The
chip is organized as 256 words, each of which has four bits.
There are two chip selects, one active high and the other

active low. It requires a single five-volt power supply.

INITIALIZE READ
PORTS CONN 4

WRITE
ADDRESS
TO TERMINAL

WRITE
DATA
TO TERMINAL

CORRECT
DATA WORD
IN SRAM

WRITE DATA
TO SRAM

]

INCREMENT
ADDRESS

WRITE BASE
ADDRESS T¢
CONN 3

Figure 7.3 Flow Chart for Motorola SRAM

2. Pin Assignments
The pin assignments for the Vitesse SRAM are given in
Table 7.2. These assignments are different than the original

Vitesse VS12G422T SRAM package.

3. Testing Algorithm

The testing algorithm for the Vitesse SRAM is similar to
but simpler than the Motorola algorithm. Each word in memory
is only four-bits wide so the data buses can be interfaced
directly to the microcontroller via CONN 1. Port 1 is used as
the Data-in Bus (to the SRAM) and Port 0 is the Data-out Bus
(from the SRAM). There are no difficult timing requirements

to overcome, therefore the address bus is connected

78

1 DI-2 8 A-7 15 GND 22 CS2

2 GND 9 A-6 16 A3 23 Vce

3 DO-1 10 A-5 17 A4l 24 GND

4 DI-1 11 A-0 18 WE* 25 DO-3

5 Vee 12 A-1 19 GND 26 DI-3

6 DO-0 13 A-2 20 Cs1+* 27 Vece

7 DI-0 14 Vece 21 CE* 28 DO-2

Table 7.2 Pin Assignments for Vitesse SRAM

directly to the microcontroller via CONN 2. Figure 7.4 shows
the flow chart of the algorithm. The actual code is located

MOVE 05h TO P1

LOAD 8000b>>DPTR

LOAD P1 @ DPTR

LOAD 8000h>>DPTR

READ @ DPTR

NO
PO = 05h?

YES

v
WRITE DPTR TO
SERIAL PORT

WRITE PO TO
SERIAL PORT

INCREMENT DPTK

LOAD 8000h>>DPTR

Figure 7.4

79

v

WRITE 05h @ DPTHR

Flow Chart for Vitesse SRAM

in Appendix C.

80

VIII. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

The testbench was completed and functionally tested just
prior to the conclusion of this project. Assembly language
programs were written to test the two memory chips involved in
the LT GaAs project. While most of the original objectives
were met, there is more work yet to be done. A self-test
program would be‘ nice to prove the functionality of the
testbench. The testing algorithm for the two memory chips
should be made more robust to better test the functionality of
the chips rather than to just check the susceptibility to
SEUs.

As 1s typical of research projects, numerous unforeseen
problems arose and were individually solved during the
construction of the testbench. Most of these problems
involved the construction of the PC board. Wire-wrapping the
board would have eliminated almost all of the problems and
kept the project moving on schedule. However, the milled
board adds a large measure of reliability to the testbench,
looks much more professional, and provided a chance to learn
how to build PC boards. The Naval Postgraduate School Physics
Department owns the necessary equipment worth over $35000, but
it is seldom used. In order to build this PC board, the
entire process had to be figured out from scratch. A detailed
description of the process is included as Appendix D in order
to pass on the knowledge gained. The most important lessons
on PC board layout are:

1. use the largest pad size possible to make soldering

easier,

2. use traces that are as wide as possible to prevent

them from breaking,

81

3. make all solder connections to the components on the
back of the board,

4. 1if possible, double the mill width to further isolate
the traces and prevent solder bridges, and

5. place all north-south runs on one side of the board

and east-west runs on the opposite side.

B. RECOMMENDATIONS

The primary use of the testbench will be to test memory
chips. A very important follow-on project would be to develop
the capability to test DRAM chips. Whether a refresh circuit
is necessary will depend on the refresh requirements of the
particular DRAM chip and the efficiency of the code. It may
not be necessary to use a refresh circuit if all the addresses
are cycled through within the refresh period.

DRAMs are often constructed in a block format which
requires both a row address and a column address. This square
aspect ratio provides a possible method of avoiding the
necessity of generating refresh cycles. An entire row can be
refreshed whenever any address on that row is accessed. Thus,
if the addresses are sequenced in order such that consecutive
addresses are on different rows, it may be possible to test
large DRAMs without the necessity of a refresh circuit.

If a refresh circuit is required, one possibility would
be to use the 187C51 timer interrupts to periodically stop the
test and refresh the memory in software. A second possibility
would be to build an adaptor board to generate the refresh
cycles. The output of a programmable timer in the i87C51 can
be accessed at Port 1, pin 0. This can be used to initiate
refresh cycles on an external adaptor board. Either way,
adding the ability to test DRAMs would enhance the usefulness
of the testbench significantly.

82

As mentioned earlier, programs need to be written to
functionally test the memory chips. This test must be done
before any meaningful test for SEU susceptibility can be done.
This test would do more than just write fives to each address
and then read each address. A functional test would have to
write fives to each address first, then write As to change the
bit pattern, then write 5s again to change back to the
original bit pattern. This test checks to make sure that all
bits can store both a zero and a one and that all bits can be
set and cleared. The use of an alternating bit pattern will
test for shorted leads. If this test passes, then a final
test would be to write a different value to each address and
verify that it was actually written. This checks for address
independence. The functional test of the memory chip would be

separate from the radiation test.

83

84

LIST OF REFERENCES

1. Amsler, D. E., Design of a Universal Test Platform for
Radiation Testing of Digital Components, Master's Thesis,
Naval Postgraduate School, Monterey, CA, Sep 1996.

2. Stanley, W. D., Operational Amplifiers With Linear-
Integrated Circuits, 2nd Edition, Merrill Publishing Co.,
Columbus, OH, 1989.

3. ECE Dept. 8051 homepage, Paul Stoffregen, Oregon State
University, http://www.ece.orst.edu/serv/8051/, accessed Dec
1996 to Feb 1997.

4, Weatherford, T. R., Marshall, P. W., Dale, C.,
Peczalski, A., Baier, S., McMorrow, D., Twigg, M., Campbell,
A. B., "Soft Error Immune LT GaAs ICs," 18th Annual IEEE

Gallium Arsenide Integrated Circuits Conference Proceedings,
Orlandeo, FL, Nov 3-6, 1996.

5. Embedded Microcontrollers and Processors, Volume I,
Intel Corporation, 1992.

6. Vitesse Product Data Book, Vitesse Semiconductor
Corporation, 1989.

7. 80C51 Family Harware Description, Philips
Semiconductors, 1995.

8. 80C51 Family Architecture, Philips Semiconductors, 1995.
9. TTL Logic Data Book, Texas Instruments, 1988.

10. MAXIM +5V-Powered, Multi-Channel RS-232
Drivers/Receivers, Maxim Integrated Products, 1996.

11. UT69RH051 Microcontroller Product Brief, United
Technologies Microelectronics Center, Inc., 1995.

85

86

1

1A1
1A1Ul1
1A1U2
1A1U3
1A1U4
1A1US
1A1U6
1A1U7
1A1US8
1A1US
1A1U10
1A1U011
1A1UL12
1A1U13
1A1U14
1A1U15
1A1ULl6
1A1U17
1A1U18
1A1U1S
1A1U20
1A1U021

1A1U022

APPENDIX A.

RAD-HARD
PART NUMBER

UT69RHOS51
UT28F64
UT67164

UTe67164
HCS573MS

UT54ACS138
UT54ACS138
HS-82C55ARH
HS-82C55ARH
HS-82C55ARH
HS-82C55ARH
UT54ACS245
UT54ACS245
UT54ACS245
UT54ACS245
UT54ACS245
UT54ACS245
UT54ACS245
UT54ACS245

HCS574MS

HCS574MS

LIST OF COMPONENTS

NON-RAD-HARD
PART NUMBER
MBK051010BW

187C51FC
AM2764A
61C64
61Co4
T4HC573
MAX233
74HC138
74HC138
82C55A
82C55A
82C55A
82C55A
T4HC245
74HC245
74HC245
74HC245
T4HC245
74HC245
74HC245
74HC245
74HC574

T4HC574

87

DESCRIPTION

Aluminum Enclosure
By PFT Inc

Primary Circuit
Board

8-bit 4-port
microcontroller

8K X 8 EPROM

8K x 8 RAM

8K x 8 RAM

Broadside Octal
Latch

RS-232/TTL Converter
3-to-8 Decoder
3-to—-8 Decoder
Programmable
Peripheral Interface
Programmable
Peripheral Interface
Programmable
Peripheral Interface
Programmable
Peripheral Interface
Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever

Octal Bus
Transciever
Broadside Octal D
Flip-flop

Broadside Octal D
Flip-flop

RAD-HARD NON-RAD-HARD DESCRIPTION
PART NUMBER PART NUMBER

1A1U23 HCS574MS T74HC574 Broadside COctal D
Flip-flop
1A1U24 HCS574MS 74HC574 Broadside Octal D
Flip-flop
1A1U25 UT54ACS08 74HCO8 Quad Two-Input AND
Gate
1AlC1 10uF Capacitor
1A1C2 10uF Capacitor
1A1C2 10uF Capacitor
1A1CR1 7.3728 MHz Crystal
1A1R1 8.4Kohm Resistor
1A1J1 AMP 102154-8 34-Pin Ejection-
Style Pin Headers
1A132 AMP 1-102153-0 50-Pin Ejection-
Style Pin Headers
1A1J3 AMP 1-102153-2 64-Pin Ejection-
Style Pin Headers
1A1J4 AMP 1-102153-2 64-Pin Ejection-
Style Pin Headers
1A1J5 AMP 1-102153-2 64-Pin Ejection-

Style Pin Headers

1A2 LSWS-3031 3 Output Switching
Power Supply by ACME
Electric Corporation

1J0 AMP 745496-2 25-Pin Subminiature
D Connector

1J1 3M 3329-0000 34-Pin Plug
Connector

1J2 3M 3331-0000 50-Pin Plug
Connector

1J3 3M 2727272-0000 64-Pin Plug
Connector

1J4 3M 22272-0000 64-Pin Plug
Connector

1J5 3M 22272-0000 04-Pin Plug
Connector

1J6 108-0902-001 Banana Plug
Receptacle-red BY
EFJohnson

137 108-0902-001 Banana Plug
Receptacle-red BY
EFJohnson

88

1J8

1J7¢

1swl

1sw2

1F1

1F2

1F3

1F4

NON-RAD-HARD
PART NUMBER
108-0902-001

PART NUMBER

108-0903-001

1500R11E

8551IMZQE2

3453~-LF7
3453-LF7
3453-LF7

3453-LF7

89

DESCRIPTION

Banana Plug
Receptacle-red BY
EFJohnson

Banana Plug
Receptacle-Black BY
EFJohnson

Lighted Toggle
Switch, SPST, Red,
by EATON

Push Button Switch,
SPST, Momentary on,
by C&K

Fuseholder, Panel
mount, by Littelfuse
Fuseholder, Panel
mount, by Littelfuse
Fuseholder, Panel
mount, by Littelfuse
Fuseholder, Panel
mount, by Littelfuse

90

APPENDIX B. SCHEMATIC DIAGRAMS

This section contain the following schematic diagrams:

*
*
*
*
*

1Al
1A1
1Al
1A2
1Al

Microcontroller and Memory Subsystem

Address Ports, 16 and 32 Bit Ports

Peripheral Interface Subsystem, 8 to 32 Bit Ports
Power Supply

Board Layout - Component Location

92

7 40] L33HS _ N 9661 AON 91 DJSN Orl7 ‘wosduoy] 'y uyor
319a Ad NAYAQ
1 o 9 _@;_o SVAU/m_mmSM/mwd_m WALSASONS AUOW3 RUY U3}JOUFUODOUDIN
YN 1A YN ONIAYAQ
.
2 39vd DL <5
sng s/ N
oa anol—= anol—= coa anol—>
SYyoa 2002 200} ——— £ { ot LA B
v o Bl L v rod eot B
: a loa T 100 = B soa 100 ——=1—
S 904 ova it 00a o 900 000 f—i
2 ‘o0 ov]— ov 2 zon ov od
5300 N \ v 559 |22 v
L £3)] .
S WS o \ WS Mu \ (A P b
A som — Bx8 0 gxyg €Y vsr |2 4
Ty Yo PV $919 ¥ b "' vrosany PV sy ¥ B
A b Y e s o =4l
® N — en oY —® on 33 1ar yaat—ince
—{es? 29— 9—— —on P2 — £ a3
an 2iyf— 2ryf—— 39 2ty &3 15,80 | S
EDN ® o ® ONE- ESIN . N o5y 88, Y
1 82 1 8€iys |V EW
AS+ AS+ NS+
’ 8 Z AN /
[(CEE]
€2 $39vd 0L A PN . A A\
sng ss3¥aay 91 N
91 5 ™M
, gs2n /H o)
TSR !
£'2 $399d 01 v_ S
|2 L
8v/1-2d SSAL=T
2 18 ovri-2d 1wax|2E andt]”_40di] -
HOLY WV LVE Es i e 0iv/2-2d 27X hﬂ WO ER 2HH 82L82
y/e-2d £-€d/0
2W/b-2d 9-Ed/¥A
TV 1v/6-2d S-€d/TLi—
€ 30k viv/9-2d v-£d/0L— Tw*eo -2ty T
ERETYY Glv/i-2d E-€d/LN] A avals
£2 $30vd 01 1314 s 1 N3Sd e-€d/0INI -0 Vg
v cca = el 1-€d/70X1 +A DOA
se = . N fatar=3 P4
e 5 ww aND AL =l 0-gd/ax 20 xyn N3l N
Stiss 51 i (v/2-04 13539 ~22 WiLfe AS+
Tceon 1|90 ot 9¥/9-0d ¢-1d -A 9N N
cijso sa- /5-0d 1oy 91 wno2L” LnonfE
Ejvo Va5 PY/b-0d s-1d N2y NI
STIEY escom BO[Z v/€-0d p-1d 10028 @NI2L
{20 2 2vrz-0d £-1d
10 ia 19/1-0d 2-1d
8l an €
el wm[m;um /0-0d , I =
_\|_om : en 1[G/ 8! o-1d T
At 2casy
o o p YIVG AJ5 27 0 NNDD
‘ vd 0L
SNE v1va 8 N VIVQ IRX €
€2 $39vd OL =
(NN NN 8 /

94

7 4072 ‘rm_m:._w_ 9661 AON /1 9asSN OrL7 Uosdwoyl 'y uyop

NOISHIA 1490 AT NAYST
(s
1 _mz_o.mu.xU/m_mmr_P/mm:u_ S}v0d 3 2€ puv 91 's3vod mmm(:o_om
ON OMG IWYNITTS JHYN ONIAYS
Snd € 1304
A1 WO 8 €dd 2dd|-
M 94 3] Elyaq 184
Frise 9y c8d 0dd
moIn: = Rl
e m< PEA 1odp—1
w” 1a SPVLg \||bmul|,_u 2 2d
g v 50 ¥adf—
il
— Sodf—
eadl 3on euln R 92d}—
/_\I ——ea 0IN g~
AS+ - — oy 5
(8 aNofgr=T —te 1 =
e LY g oo VGGIC8 gl = W
M” 5 1353y s3 55538 3 § a6od wougy
BT EmaDm«qu/ WM omlw.lll
w“ 2a mzm g 9vd 1vd
Tijie Sv2rLayls m«m . muu
71104 _<H| % Pvd 1
23d wu> O%M e
/_\ 02 T334 SNE v_130d
AS+
d sna g _1and
= g H]|
L P L By Jaal%]
21)%8 3 |
Trjse 9v}g———] cgd 08—
PTIPE L TOSY ama— 98d €3d
A o oo S|
£ o Ase 7| "
e ~ e
" 1 -
ol b £
" ————ca S3dj—
] & LN —va 93d}—
U o — la 60
AS+ = —2 o
@ N — I -
s il YGGI2C8 qol—= W
6vd
FHsE 5 _w,wum MwZ S | 360d wouy
HleaC TNhelZ tva o
kL mw MM 2 g 9vd Ivd
/ w” 18 S¥2rLay Svd 2vd
T mn Mu S o5]7vd ® evdfy
34 1] 1 abod wouy
m‘m\dqu; il o) ST v)
SNd_v_1¥0d
nes [TEr]
ETREL 1 abod wouy
T 13538
] 1 |
el GIEn] 6]]S €] 1| Asr STeTr) AG+
RIEENEEIE]| alviel|
/ anaammm wwwwwvwwwww: IBE
DA R S ES A Y N AN NN)
il ,Snd SS3900Y | 2603 uous
sng §/0

95

96

7 P ;
40 ¢ 133HS 9661 AON 02 0JSN 9r L3 ‘uosdwoyl 'y uyor
NDISHIA DRI AG _NMVIT
: : ; |
—H @?40 MHPY_U/mmmmC_P/mwa_%/.U WLOPQOBQ sng oo g 2¢& O3 8 .EWPW\AWQSW 300V jJayu] AO(‘W.(_Q_LWQ
ON "OACQ IWNYNIT S AWYN ONTMAYAD.)
ShE € 1904
24 NI 8 £4d 24di—
N ! b Y LN 194{%
o s cad 08
_“v.d s S s e oy 584 £2d—
A L sneslelly oo Tl —
W2 —
T s _uea s] e svarzay A 2 024
.- CEE % R
€9 mm VLSH mm [RE] mmm.la@u; LIt va 93dI—
¢ Jdp—
AT A) AL .
a8 anolg> 1 1 -
. /_\|M,uu> o30S £ea M o8 Lok e VSSIC8 o= ¥
FER
>m._l - e T ”M g wwwmm n_B s { abod wous
I 1 vz an (]
e’ “alf G et6 1y o o e
5
. %0 o055 i e svere ovd 2vd
0 sa 5 L e e wd ® £vd|
£ w” v0 a5 9 8T m.. ovlS [1
21E0 psgon EQFF EREE 2 8
51 S 6 A euialy
AP e on A 02 4 sna_v_iand
[7 A&+
0 sl e P
NVLE *30 She g 130d
NS+ = 8
. 8 aNofgr €dd 2gal
L *2 anof— < Lo PIY{ - L] poeo 194t%
1)y P L N— 4 libes ov|g—] 584 0dd
e) £ e 6 el £ 2 e v 984 £ad—
Si £1]2° A+ ¥ iz
2 tleo g e Tiedg 1 Y] 14d 20dj—]
> v0 +a 31{28 eV’ s+ PPA 19df—
Slleo €a d 1 1g S¥eriay 08 2 Lig 03d|—
ST[E0 vzsoH 3 o Al — —
P 220 & 50 o Whe——] 19 v3d
[T Y1 e 6 ead | e1)2 G S o S3d—
00 og S ECVNIE S0 B 92d}—
o0 _fls, ezl ® R N -
0 ! ASH 2a ov o <
AS . @ ano 1a W
P9 anol= £ mﬂ,mm L w VGGIC8 quo|l—= W
a Bod
I 4 o " so et 2 s | IR 2 }ebed o
EI bt Mm 2 v6 | Plea Y 194 ovd, vy
S 2] va S B w._qunﬁﬁDm« 8 9vd 1vd
: m” 0 4 con £O|2 M < 7y1d Sreriay e evd)
7120 120 25— o v o7 o cval:
28 L, ia) ov
a8y 1a 23d ETVET
o0 _ el ww> cwm od /_Uum.uu> ® 3T 8, — «\Eam \
>m¢om k ns+
15538
/ J AN SRCIT] 1 86od wouy
HILVY Yivo
L TR =
A DV IHESH
= ¥ NNOO
| [Li]] J
IIENERRNNNRERRERNR 1L X
s1[siritesjor 8]
glo! .u_n‘ [
NG s W
\

97

v 30 ¥ 133HS | 9661 Uor 1g 93SN Dr17 Uosduoyl 'y uyor
e IRt WYN INIANLS |
T _c;_o,vwa/m_mm;uﬂ/mBC 1E0E-1MSTT 18POW dWIV AddnS JemOd 29T
ON 9Mad 3HYNITLA AWYN ONIAYAT |
E:‘ 613 \hw
mmm 51 % Str SLI
129 02y, 22y 23 o - - T
_ m—% — SwA Il_ll_ €01 S
o N N . |
zz_uu 011l— \.mWh e 123 923 91D &W—_ N “ > s n—C
_muw T . P vy e .
D o iz 1—‘ ~ u __—u
nan - M 20
o g pus Tt_
/~\ 1% nﬂ ﬁ~| __ vNu“mH
o T ®
SOA | o ﬁ_\ L JI /._\ _l A_nmu
E0AN | o SN vmmm S+‘ MmD FNQN Fa & °
m =1 mmm—\ E/u—\ l—l *] |_l Y H % 1
T T ’

99

100

CONN S

RESET
10_uF

84K
CONN 1

MAX233

3
z CONN ©

CONN 2

74HCS74

i87CS1
=74~ .

u

hz

O £—F 16 ur
C2 3 16 uF

74HC138

74HCS74 74HCS74 74HCS74

LU2L

J

23 24

74HC138

T

U2
74HCS73

AMRZ64A

u2

61C64

us

U4

us

82CSSA
MO —

BECSSA

uie

ui

82C33A

w2

82CS3SA

74HC24S

13

CONN 3

7drcads
e

w4

V1S

Uie

4
o) can

7duC24S
1

(0343

U9

74AC24S
=

20

TEST BENCH PC BOARD

101

DRAWN BY: JOHN A. THOMPSON

4 DEC 19396

102

APPENDIX C. SOURCE CODE

A. MOTOROLA 256X16 SRAM

ek kkkhkkhkkhkkdhhkhkkhkkhkhkdrhkhdhkhkhkhkhhkhkhhkhkhkhkdhhhkhkdbhkhkdhkhhddhkhkddddrhkkkdkkkk

Function RAMTEST

This function tests Motorola SRAMs by loading all
addresses with 0101010101010101 (5555h), and then
cycling through the addresses looking for any that have
changed value. The address bus must be connected to
CONN 2. The Data-in Bus (to the SRAM) must be
connected to CONN 4. The Data-out Bus (from the SRAM)
must be connected to CONN 5. The SRAM will be located
at 8000h and use CS8 for the enable.

Ne Ne Ne Ne Ne Ne Ne N2 Ne N N

Code written by:
John A. Thompson, LT(Jjg), USCG
Naval Postgraduate School
2 Mar 1996

ek kkhkhkkkkkkhkkhkkhhkhkdhkdhhhhkdhkdhhkhhbrhkhkdhhkhkhkhdhkhkhkhkdbhhhkhkhkhkhhhhkkkhkhhhd

Ne Ne N N

~

;Equate Statements

Cout equ 0030h ;Sends Acc to serial port

pHex16 equ 0036h ;Sends DPTR to serial port

Esc equ O0O03Eh ;Tests 1f escape has been pressed
UllPortA equ 6008h ;82C55 #3 Port A

UllPortB equ 600%h ;82C55 #3 Port B

UllPortC equ 600Ah ;82C55 #3 Port C

UllControl equ 600Bh ;82C55 #3 Control Word

Bytel equ 6010h ;Low byte of CONN 5

Byte2 equ 6014h ;Low-Mid byte of CONN 5

org 2000h ;Load function in RAM #1

;Load 5555h to all addresses
; Program the 82C55 Periphery Device #3 for output
mov DPTR, #UllControl ;82C55 #3 Control Word

;Address
mov A, #80h ;All outputs, Mode O
movx @DPTR,A ;Program 82C55 #3

; Write test word into output latches for CONN 4 bits
; 0-15

mov DPTR, #Ul1lPortA ;82C55 #3 Port A Address
mov A, #55h ;Load test word: 01010101b
movx @DPTR,A

mov DPTR, #U11PortB ;82C55 #3 Port B Address

103

Ne Ne e Na wm

loopl:

movx (@DPTR,A

Set CONN 4 as output only and enable the output
mov DPTR, #Ul1lPortC ;82C55 #3 Port C Address
mov A, #0003h ;Enable outputs
movx @DPTR,A

Cycle through all addresses writing the test word
NOTE: The problem here is to generate the WRITE
signal. The testword is constantly output on CONN 4.
In this situation, the Accumulator is written out,
but goes nowhere. But in doing so, a WRITE pulse

is generated.

mov DPTR, #8000h ;Load DPTR with base address
movx @DPTR,A ;Generate WRITE pulse
inc DPTR ;Load next address

cjne DPL, #00h, loopl ;Test DPTR for last address

Test SRAM for errors

NOTE:

The Motorola SRAM chip uses a single W/R* signal.

There is no necessity to generate a READ* signal; it is in
the read mode by default. However, it 1is necessary to
generate a DATALATCH signal which is the result of ANDing

; Al5 with READ*.
1

oop2: mov DPTR, #8000h ;Load DPTR with base address
mov A, @DPTR ;Generate a DATALATCH signal
loop3: push DPTR ;Save SRAM address
mov DPTR, #Bytel ;Load address of low byte of
;CONN 5
mov A, @DPTR ;Read low byte
cine A, #55h,error ;Test for error
mov DPTR, #Byte?2 ;Load address of high byte of
;CONN b5
mov A, @DPTR ;Read High byte
cjne A, #55h,error ;Test for error
pop DPTR ;Restore SRAM address
loop4: inc DPTR ; Increment DPTR
lcall ESC ;Test for exit condition

error:

Jbc C,exit
cjne DPL, #00h, loop3 ;Test DPTR for last address

mov A,#11001100 ;Load cycle-complete signal
lcall Cout ;Print it
dmp loop2

;Error Handling Routine
mov DPTR, #Bytel ;Load address of low byte
nmov A, @DPTR ;Read low byte
lcall Cout ;Write erroneous data to

104

;serial port

mov DPTR, #Byte?2 ;Load address of high byte

mov A, @DPTR ;Read High byte

lcall Cout ;Write erroneous data to
;serial port

pop DPTR ;Load Address

lcall pHexlé6 ;Write address to serial port

novx @DPTR,A ;Generate WRITE signal to

;restore data, contents of
;Accumulator go nowhere
push DPTR
Jmp loop4 ;Return to SRAM test

;Exit Routine

exit:

B.

Ne Ne Mo Ne Me Ne M Ne Ne Na Ne Na Mo Ne Ne Ne N

ret
END

VITESSE 256X4 SRAM

--k**‘************

Function RAMTEST1

This function tests Vitesse SRAMs by loading all
addresses with 0101 (5h), and then cycling

through the addresses looking for any that have
changed value. The address bus must be connected to
CONN 2 and the data buses connected to CONN 1. Port O
will be used for the data-in bus (to the SRAM) and
Port 1 will be used for the Data-out bus (from the
SRAM). The SRAM will be located at 8000h and use CS8
for the enable. The OE* pin on the SRAM is connected
to READ* and the WE* signal is connected to WRITE*.

Code written by:
John A. Thompson, LT(jg), USCG
Naval Postgraduate School
10 Feb 1996

ek khkrkkhkkkkhkhkkhkhkhkdhhhkhkdhhkkkkdhkhhkhkhkhkkhkhhhkhkddhkdhkdkdkhkdkkkdkhx

~

;Initialize System

Cout equ 0030h ;Sends Acc to serial port

pHex16 equ 0036h ;Sends DPTR to serial port

Esc equ O0OC3Eh ;Tests if escape has been pressed
org 2000h ;Load function in RAM #1

;Load 0101 to all addresses

105

mov DPTR, #8000h
mov A, #05h
loopl: movx @DPTR,A
inc DPTR
cjne DPL, #00h, loopl

; Test SRAM for errors

;Load DPTR with base address
;Load test value

;Load data to SRAM

; Increment DPTR

;Test DPTR for last address

;NOTE: The data coming from the SRAM is on the low byte of

;Port 1.
loop2: mov DPTR, #8000h
loop3: movx A, @DPTR
movx A, Pl
anl A, #0Fh
cjne A, #05h,error
loop4d: inc DPTR

lcall ESC

Jbc C,exit

cjne DPL, #00h, loop3
mov A, #11001100

lcall Cout

Jmp loop?2
;Error Handling Routine
error: lcall pHex16

lcall Cout

mov A, #05h
movx @DPTR,A

Jmp loop4
;Exit Routine
exit:

ret

END

;Load DPTR with base address
;Generate a READ cycle; data
;1s useless

;Load the real data

;Clear high byte

;Test for error

; Increment DPTR

;Test for exit condition

;Test DPTR for last address
;Load cycle-complete signal
;Print it

;Write address to serial port
;Write erroneous data to
;serial port

;Restore correct data to SRAM

s;Return to SRAM test

106

APPENDIX D. PCBOARD LAYOUT AND FABRICATION DETAILS

A. OVERVIEW

The printed circuit board in the test bench was built
locally at the Naval Postgraduate School. It is made from a
.062" double-sided, nickel-plated blank pc board. The
outlines of the circuit traces and pads are machined into this
board to isolate them from the remainder of the circuit. The
remaining plating material forms the ground plane on one side
and the power plane on the other. This eliminates the need to
run power and ground lines throughout the circuit. It also
provides inherent capacitance between the two planes which
helps minimize noise. The basic steps followed to create the
board are: 1) layout the circuit, 2) edit the file using a
gerber editor, 3) create an outline file for each side of the
board and a drill file, and 4) fabricate the physical board.
This section does not include details of mounting the
components or functionally testing the board

The circuit can be laid out using any CAD program that
can generate an output file in gerber (.gbr) format. At the
Naval Postgraduate School, Cadence and Mentor Graphics are
available on the workstations. These powerful programs have
a very steep learning curve but, once mastered, can provide
error-free boards very quickly. There are also several PC-
based programs available such as Hiwire and Easytrax. This
circuit was 1laid out wusing Easytrax. This program 1is
available, along with the reference manual and tutorial, as
shareware from Protel Technology, Inc. It is a DOS utility
that fits uncompressed on a single 3.5" floppy disk, making it
very portable. It will run on any IBM PC, XT, AT, PS/2 and
clones. The test bench was laid out using an IBM AT with a

math coprocessor and the program worked well. Easytrax is

107

fully capable of building multi-layered boards and even
includes some auto-routing capability. It does not, however,
accept a netlist from which to lay out the circuit. Protel
provides a library of component footprints with the Easytrax
package. There are two programs which are used to create the
board. FEasyedit is used to actually lay out the traces and
pads of the circuit. FEasyplot is used to create the gerber
(.gbl for gerber bottom layer and .gtl for gerber top layer)
files for the top and bottom of the board. It is also used to
print or plot the design. Easytrax is a stripped-down version
of Protel's full-featured layout tool, Autotrax.

This program does not have the capability to combine
segments of traces into one unified trace. This may lead to
problems 1in 1later stages. If a trace has been started
accidentally, it is important to use escape to cancel it
rather than Jjust terminating it on the starting point.
Otherwise, zero-length traces will result and will cause
problems later on. The wise designer will lay out the trace
from beginning to end in one segment or, if necessary, place
the trace in multiple segments ending each segment on a pad or
a via.

It is very important to plan ahead before beginning the
layout process. For example, the milling machine used for the
testbench has a board-size capacity of 12" x 9". At least
half an inch must be left around all the edges so the actual
design size must be no larger than 8" x 11". The testbench PC
board barely met this criteria. Also, the boards must be
mounted in landscape mode so it is best to lay it out in this
way rather than try to rotate it later on. Larger boards can
be fabricated using the Space Systems Academic Group's milling
machine.

The default pad and via size in Easytrax is .062" (62

108

mil). This pad size is very small for hand soldering. Using
a larger pad size (75 - 85 mil) whenever possible is highly
recommended. Most electronic components are built around a
100 mil (0.1") grid. Unless traces must run between pads, the
pad size can be as large as 90 mil (assuming 10 mil bit size).
The thermal pads are not really needed if there are other
traces in the area to break up the surface plane. The default
trace size of 12 mils should also be increased wherever
possible. A 12 mil trace is so delicate that any contact with
a soldering iron is likely to result in a broken trace. These
breaks usually occur right at the pad. Merging the trace into
the pad (using tear-drop shaped pads) will help prevent these
breaks. If possible, it would save a lot of problems later on
if double milling is done. The milling machine owned by the
physics department can etch a 10 mil groove around the traces
and pads. Doubling this width will make for much easier
soldering in the future. This is done by making a second pass
around the trace rather than by using a larger bit size.

The gerber editor used for the testbench is PCGerber,
produced by CAD Solutions Inc. This full-featured program
allows the designer to view and modify the design as may be
needed (errors are not uncommon when the outline editor 1is
run) . CAD Solutions Inc. has a shareware gerber editor
available via their homepage named CAMWare which is actually
a full-featured editor with only its database size restricted.
PCGerber creates a design file (.dsn) for the board which
includes the aperture file, the board layer gerber files, and
other related files such as the outline gerber files. Prior
to opening the design file, an aperture file must be built
which corresponds to the apertures used by the layout tool.
It is often easier to just use an existing file and change the

few Dcodes that are used in the design. In the design of the

109

testbench, thermal-relief pads were substituted for all the

ground and power pads. These pads allow the designer to
solder the pad without having to heat a large section of the
board. To do this while laying out the circuit, all pads that
were to be tied to ground were defined using a non-standard
size pad. This was also done with the pads which were to be
tied to V., although a different pad size was used. Once the
gerber files were loaded into PCGerber, the thermal-relief
pads could be substituted simply by switching the code for the
atypical-sized pads with the code for the thermal pad. There
are many other refinements that can be made, such as radiusing
all the trace corners or making the trace merge into the pad,
resulting in a tear-drop shaped pad.

Prior to milling the board, the traces and pads must be
converted to outlines. The milling machine actually cuts the
outlines, not the traces. The outline gerber files for the
testbench were created using Protoboard 2.00 by Regulus
Systems. This package was also used to drive the milling
machine later on. To use this program, the input gerber files
must be in the input directory (c:\pboard\input) and must be
named L1.GBR, L2.GBR, etc. L1.GBR is the top of the board,
and L2.GBR is the bottom of the board for a two-sided board.
If the program runs to conclusion (this took over two hours
using a 386 with 16 Mbytes of RAM and a math coprocessor), the
output files will be in the output directory
(c:\pboard\output) . They will be named L1OUT.GBR and
L20UT.GBR for the top and bottom of the board, respectively.
There will also be a drill file for each side (D1OUT.GBR,
D20UT.GBR, etc) and some files named LITXT.GBR, L2TXT.GBR,
etc. The two drill files should be identical unless some of
the pads are not replicated on both sides. This would occur

when a component is directly connected to the power or ground

110

plane instead of through thermal-relief pads. The L1TXT.GBR
file is the same as the input file Ll.gbr but it has been
reordered and cleaned up a bit.

More than likely, an error will occur (unless you happen
to be using Cadence or some other program more powerful than
Easytrax) and the outline editor will hang up in an endless
loop. In this case, the program must be halted and
modifications made before trying again. There is a file
called LOUT.GBR located in PCGerber's working directory
(c:\pboard\exl) which is the interim output gerber file. This
is the file that Protoboard writes to while it is creating the
outlines. If the program hangs up in an endless loop, this
file can get abnormally large. The finished bottom layer for
the testbench was approximately 600 Kbytes 1in size.
Preliminary efforts resulted in files that exceeded 4 Mbytes
due to the endless loops. These can be difficult to edit in
the gerber editor because the editor recreates everything that
the outline generator did. To edit this file, copy it to the
directory containing PCGerber (c:\cam), and activate PCGerber
(by typing "cam"). Overlay the LOUT.GBR file on the
corresponding gerber file; the error is basically where the
outline stops. The cause of the error may not be apparent but
simply deleting the offending trace or pad and retyping it
should fix it. In the construction of the testbench PC board,
there were numerous zero-length traces which caused Protoboard
to fail. These showed up as dots, but the entire trace must
be deleted and the circuit redrawn to find them. In fact, so
many errors occurred that it was less difficult to simply
delete every trace and redraw them. The easiest way to do
this is to overlay both Ll.gbr (for example) and L1TXT.GBR
which should both be identical. Make one a reference layer
and use it to show the proper location of all the traces. 1In

this fashion it is possible to delete all the traces in the

111

active layer and redraw them without having to engage any
thought process at all. Of course, use the modified layer as
the input for the next run of the outline converter.

The milling machine used for the testbench is part of the
Protoboard package. The actual machine is a model PB800 which
allows for a 9" by 12" board (8" x 11" realizable). This
machine will perform all the milling, drilling, and outline
cutting of the circuit. It also will perform auto-swaging to
connect both sides of a via using manually inserted eyelets.
This package is owned by the Physics Department at the Naval
Postgraduate School and is located in the basement of Halligan
Hall (656-2065). To use the milling machine, the outline
gerber files and the drill file must be located 1in
Protoboard's output directory (c:\pboard\output). Typing "p2"
starts the program to mill the board. At the bottom of the
screen is a prompt that provides guidance on what to do next.

It is probably best to run the drill file first since it
is the smallest. Also, if milling is done first followed by
the drilling, drilling through a thin piece of metal can twist
the metal off the surface of the board. Furthermore, drilling
before milling makes it easier to check layer-to-layer
registration. Any offsets that may be required can be
determined at this stage by drilling into a spare backing
plate and measuring the position relative to the edges. Once
the blank PC board is in place, the depth of the bit must be
set so that the drill barely penetrates into the backing
plate.

Once the holes are drilled and the routing bit installed,
the top of the board can be milled. The depth of the bit can
be set by making test cuts in an unused corner and measuring
the width of the cut with an optical loupe. It might be wise
to make test cuts in all four corners to ensure that the board

is flat on the machine. It might actually be necessary to

112

slip paper under a corner to shim up low spots.

The file for the bottom of the board must be mirrored
prior to running the program. An option is available that
will do this automatically and effortlessly. Once the bottom
of the board is milled, the eyelets can be installed in all
the vias manually and then swaged (if desired) by the PB80O
machine. This 1is done by inserting the eyelets from the
bottom of the board and remounting the board with the top side
up (the heads of the eyelets will be on the bottom). A
special swaging bit is used with the depth set so that the bit
just swages the eyelet without cutting it off. The drill file
is run again to swage all the eyelets.

The testbench PC board took about five hours to complete
all the milling, not including wasted time due to learning the
intricacies of the equipment. Once the board is completed
with all parts mounted and functionality tested, it would be
wise to protect the board by spraying it with conformal
coating. This is especially wise if a power and ground plane
is used as in the test bench. The coating will help protect

against shorts, especially if the board is being tested prior

to mounting in an enclosure.

B. STEPS TAKEN DURING CONSTRUCTION OF DOUBLE-SIDED
PCBOARD

1. Download Easytrax package from Protel Technology Inc.'s
homepage (http://www.protel.com/download.htm) and install on
a PC. The tutorials provided with the package are sufficient
to teach the program within an hour or two.

2. Plan ahead prior to laying out the board. The milling
machine used for the testbench has a capacity of 8"x11" and
the board must be laid out in landscape mode. This is good
information to have prior to laying out the board. Type
easyedit from within the Easytrax directory to enter the
editor. Lay out the circuit. Begin and end all traces on
pads or vias. Multiple segment traces will cause problems
later on. Place all traces heading north-south on one side of
the board and those heading east-west on the other. Make as
many connections to the components as possible on the opposite
side of the board because the component will block access for
soldering on the top of the board. On the testbench, the top
of the board is the ground plane and the bottom is the power
plane. Thermal-relief pads were used in order to make
soldering easier. These pads have a regular pad on the side
that must be isolated and a partial outline of the pad on the
other. In order to insert these later on in the gerber
editor, these pads were given an odd-ball size (.040" for
ground and .050" for power). All the other pads and vias are
.062". However, .062" proved to be too small for convenient
soldering. Make all the pads as large as possible, up to
about .090". Also, use as large a trace as possible within
reason and miter the corners. Eliminating hard corners in the

traces becomes more important as the frequency increases. It

114

might become necessary for high frequency circuits to make
sure all the traces in a bus are exactly the same length by
snaking the closest runs. This will ensure that all of the
bits arrive simultaneously.

3. Type easyplot from within the Easytrax directory to create
the gerber plots. A check plot can be printed from here. A
gerber file must be created for the top and the bottom sides
of the board (.gbl for the bottom, .gtl for the top), assuming
a two-sided board. Also, the aperture file (standard.apt)
should be printed out for later use by the gerber editor.

4, The gerber editor, the outline editor, and the milling
machine are owned by the NPS Physics Department and are
located in the basement of Halligan Hall (656-2065), adjacent
to the linear accelerator. They have the ability to make
multi-layered boards up to four layers thick. The Space
Systems Academic Group also have similar equipment in Bullard
Hall. This board was fabricated on the equipment owned by the
Physics Department.

5. The gerber files should be viewed in the gerber editor
prior to sending to the outline editor. Copy them to the
PCGerber directory (c:\cam) and type cam to enter the editor.
A design file and an aperture file must first be created. A
prompt will appear asking for this info. By typing in a name
that doesn't currently exist, the files will be created. The
aperture file must contain identical apertures to those in the
original design. The board layers must also be loaded prior
to viewing.

5. Any design code errors that occur on locading are probably
due to undefined apertures (D-codes). The aperture list can
be modified under the file pull-down menu.

6. Modify the design as necessary. For the testbench, larger

thermal relief pads were substituted for the power and ground

115

pads. This is simply a matter of substituting the D-code for

the .062" thermal-relief pad for the D-code of the power or
ground pad. This must be done on one side at a time or the
thermal will be placed on both sides of the board. One side
must be isolated by placing a standard .062" pad there and the
other must have the thermal pad. Save the files and exit.
7. The gerber files must be edited to remove the GO0l code.
It will show up only once per file and is placed automatically
every time the file is saved by PCGerber. The DOS text editor
and its search function can be used for this. This code
instructs the milling machine to do a linear interpolation.
The equipment owned by the Physics Department doesn't
understand this command and will crash. Removing the code
will prevent this.

8. The gerber files must be copied to the input directory of
Protoboard (c:\pboard\input) and renamed as L1.GBR and LZ2.GBR
(assuming only two sides).

9. Type pl to execute a batch file which starts Protoboard.
Accept all the defaults unless you want to name the job, which
isn't required. This program takes hours to run for any
normal sized circuit.

10. If the Protoboard completes the design with no errors,
the completed outline gerber files will be in the output
directory (c:\pboard\output) and will be renamed LIOUT.GBR and
L20UT.GBR. There will also be two drill files (a .gbr file
for viewing and a .dbf file for running on the milling
machine) for each side which should be identical, and two
files named LITXT.GBR and L2TXT.GBR. These last two files are
the same as the input files except that they have been
reordered and cleaned up a bit.

11. Quite likely, the program will hang up in an endless

loop. In this case, the working gerber file, LOUT.GBR, can be

116

exported to the gerber editor to find the error. It 1is
located in Protoboard's working directory, c:\pboard\exl.
Copy it c:\cam and load it along with the corresponding gerber
file for that particular side.

12. The error will be where the outline stops. There may be
other errors that show up but that didn't hang up the program.
These errors are usually not obvious but deleting the
component that caused the error and replacing it will usually
do the trick. Often, there are hidden segments of traces
under the trace that only show up after the trace is deleted
and the circuit redrawn. On the test bench, there were so
many errors that it soon became apparent that redrawing the
whole board would take less time. This was made relatively
painless by displaying L1.GBR and L1TXT.GBR at the same time.
They should both be identical. Make one a reference and
delete all the traces in the other. In this fashion, the
reference file shows the location of all the traces and the
job becomes fairly simple. Redrawing all the traces on one
side of the testbench took about two hours.

13. Start over at step 7 until Protoboard successfully
completes the design and exits. It is still necessary to view
the output files to double check that there are no errors.
Sometimes an error will get by without stopping the program.
14. Once the outline 1s generated and all errors are
corrected, the output files must be left in the Protoboard
output directory so the milling machine drivers can find them.
15. The driver for the milling machine is executed by typing
"p2". Prompts will appear at the lower right on the screen.
16. The design must be aligned to the machine so that it fits
on the board. One way of doing this is to start with the
drill file using only the masonite backing plates. Another
way is to create a file containing only the outline but that

takes another step. Once the location of the design on the

117

backing plate is determined, any offset required can be
entered.

17. The blank PC board to be etched should be lightly sanded
prior to mounting on the PB800 milling machine. It 1is
important to use a clean backing plate under the PC board. If
a drill were to encounter a preexisting hole, there is a good
chance of breaking the bit.

18. It is probably best to run the drill file first since
this was probably used initially for alignment purposes and
the bit is still in place. All the holes are .031". The
depth of the drill should be set to just penetrate through the
PC board and barely into the masonite. This should be done in
a corner of the actual board. Protoboard allows the tool head
to be manually moved in increments of the step size that is
entered by the operator. On the PB800 milling machine, there
are two set screws on the front of the router motor. The top
one secures the motor in the bracket and must always be kept
tight. The lower one secures the bit guard. This one must be
loosened slightly while drilling to let the bit plunge through
the board. The bits must be installed so that they are flush
with the tool guard. The pneumatic motor requires over 80 psi
of dry air to operate. The safety shield around the bit 1is
required so that the vacuum cleaner will remove all the dust.
19. After the board is drilled, change the bits to the
milling bit. It must be mounted flush with the tool guard, as
before, but this time the lower set screw must be tightened.
The depth of the cut must be set so that the width is .010".
An optical loupe with a measuring scale attached can be used
to measure the traces. It would be wise to test this in all
four corners to ensure the board is level. If it is not, it
can be shimmed up a bit with a piece of paper. Lightly spray
the board with teflon or silicon lubricant to prevent abrasive

wearing of the plastic channel width limiter foot and mill the

118

top side.

20. Prior to milling the bottom side, the gerber file
(L2OUT.GBR) must be mirrored. Protoboard will easily do this,
but it must be commanded to do so.

21. Turn over the PC board, lightly sand this side, and
remount. Lightly spray the board with silicon or teflon
lubricant and etch the bottom side.

22. After milling, remove the PC board and manually insert
eyelets in each of the vias from the bottom of the board so
that the heads are down. Remount the board with the top side
upward. The eyelets fit fairly snug so there shouldn't be
much problem with them falling out as the board is turned
over.

23. Mount the swaging bit into the machine. Set the machine
depth so that the suspension gap is just flexed when the
eyelet is swaged. Set the RPM to one third of full speed by
setting the air pressure to 20 psi. Spray the board with a
silicon or teflon-based lubricant to keep the swaging bit from
breaking. Run the drill file.

24. The finished PC board can be cut from the remainder of
the board with a sheer (the machine shop in the basement of
Spanagal Hall has one), or Protoboard can do it. 1In order to
have Protoboard do it, an outline of the board must be
created. This only takes a few minutes. Any one of the
layers can be made into an outline file simply by deleting all
the pads, vias, and traces in the gerber editor. This must be
run through the outline converter which only takes a few
moments. A special bit is used to cut out the board and is
mounted as the other types of bits. The speed of the cut is
set to 5% and the depth is adjusted to Jjust penetrate the
board.

25. Once the board is finished and and has functionally

tested, it would be wise to protect it with conformal coating.

119

This will prevent dust from shorting a trace to the power or

ground plane. It will also add a small measure of safety
(maybe only to the fuses) by insulating the power and ground

planes.

120

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvior, VA 22060-6218

Dudley Knox Library, «oeuiiuiiieieiteeeeeenioennnnns
Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

Commandant (G—=SRE) .ttt tteeeeeeeneeneeaeennens
United States Coast Guard

Washington, DC

20593-0001

Chairman, Code EC ittt teteeeeeeeeeeeeosaceaaanse
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Douglas Fouts, Code EC/FS ..t iiiiieeeennnn
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

Prof. Todd Weatherford, Code EC/Wt
Department of Electrical and Computer Engineering
Naval Postgraduate School

Monterey, CA 93943-5121

LT John A. ThompSOn ...ttt it tetenneassnnannns
399D Ricketts Road
Monterey, CA 93940

